- DEFECTS, DEFECTS, DEFECTS
- CAN'T LIVE WITH THEM !!!

• CAN'T LIVE WITHOUT THEM !!!

- DEFECTS, DEFECTS, DEFECTS
- Perfect crystals
- Is there such a thing?
- All atoms on correct lattice positions
- Can only exist at 0°K
- Above 0°K, defects exist in structure
- Distinct kinds of defects

- DEFECTS, DEFECTS, DEFECTS
- Different size and dimensionality
- Intrinsic
- Extrinsic
- Range of concentrations
- Random or ordered
- Isolated or clustered
- Surface and bulk

- DEFECTS, DEFECTS, DEFECTS
- Point
- Line
- Plane
- Three dimensional
- Defects clusters, ordered, random
- Grain boundaries between materials

- DEFECTS, DEFECTS, DEFECTS
- Defects control the properties of <u>ALL</u> solid state materials
- Thermodynamics of defect formation
- Defect control of Charge Transport, Optical, Magnetic and Mechanical Properties, Chemical Reactivity, Crystal Nucleation and Growth, Superconductivity

Close packed structures of spheres

Site C

Face centered cubic (FCC) or cubic close packed (CCP): ABCABC.....

Site A hexagonal close packed (HCP): ABABAB.....

N spheres N octahedral holes 2N tetrahedral holes

Octahedral hole: Coordination 6 Tetrahedral hole: Coordination 4

Rock salt (NaCI) structure: CCP array of N anions, N cations occupying all the octahedral holes.

Fluorite structure (Ca F): CCP array of N cations, 2N anions occupying all the tretrahedral holes.

Zinc blende structure (ZnS(c)). CCP array of N atoms of type A, N atoms of type B occupying every other tetrahedral hole.

Wurtzite structure (ZnS(h)): HCP array of N atoms of type A. N atoms of type 8 occupying every other tetrahedral hole.

INTRINSIC POINT DEFECTS

- Schottky defect: substitutional vacancies
- Schottky pairs
- Cation-anion pair with charge balance
- Requires electroneutrality of lattice
- MX 1 : 1 for M⁺ and X⁻
- MX₂ 1 : 2 for M²⁺ and 2X⁻

INTRINSIC POINT DEFECTS

- Frenkel defect: interstitial ion ion vacancy pair
- Ion moves from substitutional into interstitial position
- Usually smaller cation e.g., rock salt structure AgCl, where Ag⁺ moves into spacious interstitial site of larger Cl⁻ anion sub-lattice
- Reverse case for fluorite structure, MF₂, MO₂
- Smaller F⁻/O²⁻ anion moves into interstitials of larger M²⁺ cation sublattice

COORDINATION OF FRENKEL CATIONS AND ANIONS

Cationic Frenkel's

- In rock salt AgCI
- Agi⁺
- Ag⁺ moves from Oh substitutional sites to Td interstitial sites
- Important defect in the silver halide photographic process

SILVER HALIDE PHOTOGRAPHY

- Photographic emulsion, AgBr/sensitizer/gelatin/ plastic film
- 0.05-2.0 μm size AgBr grains
- VB to CB e-h excitation in grain (Eg = 2.7 eV)
- Simultaneous sensitizer S e-h excitiation (dye molecule) extends range of absorption across visible

FORMING THE PHOTOGRAPHIC LATENT IMAGE

- Photoelectron trapped on Ag_i⁺ gives neutral Ag⁰_i in grain
- Ag⁰_i diffuses and grows by accretion of electrons/ions to give small silver clusters

This is the latent image

- Silver clusters in exposed regions developed (further reduced and grown) in hydroquinone (HOC₆H₄OH) HQ RA,
- Unreduced Ag⁺ in unexposed regions washed away with sodium thiosulfate Na₂S₂O₃
- Forms soluble silver thiosulfate complexes [Ag(S₂O₃)₂]³⁻

FORMING THE PHOTOGRAPHIC LATENT IMAGE

- $Ag_{i}^{+} + e = Ag^{0}$
- $Ag^0 + e = Ag^-$
- $Ag^{-} + Ag_{i}^{+} = Ag_{2}^{0}$
- $Ag_{2}^{0} + Ag_{i}^{+} = Ag_{3}^{+}$
- $Ag_3^+ + e = Ag_3^0$
- $Ag_{3}^{0} + e = Ag_{3}^{-}$
- $Ag_{3}^{-} + Ag_{i}^{+} = Ag_{4}^{0}$
- "Latent image" thought to be a silver cluster of nuclearity 2-4 developed and grown to micron size silver grain
- Notable 10²¹ TOs/hv

Archetype Fluorite CaF₂ Lattice

- Cations occupy half of the octant cubes in fcc anion lattice
- Lots of interstitial space in which the smaller anions can move

COORDINATION OF FRENKEL CATIONS AND ANIONS

- Anionic Frenkel's
- Fluorite lattice
- ccp M²⁺ or M⁴⁺
- O²⁻ or F⁻ in all Td sites
- SrF₂, PbF₂, UO₂, ZrO₂
- O²⁻ much lower charge than M⁴⁺
- F⁻ lower charge than M²⁺
- Small anions in large cation lattice
- Inter-anion repulsions also favor anion mobility

COORDINATION OF FRENKEL CATIONS AND ANIONS

- Very open structure for O²⁻ and F⁻
- Cations occupy alternate (half) MO₈/MF₈ anionic octant cubes
- Lots of interstitial octant empty sites for transport of small interstitial Frenkel O²⁻ or F⁻
- Optimum situation for ionic mobility via diffusion of interstitial anions

Thermodynamics of Defect Formation

Balance of Entropic Advantage over Enthalpic Demand

THINKING DEEPER ABOUT INTRINSIC POINT DEFECTS

- Define ΔH_s and ΔH_F as enthalpy to form one Schottky and one Frenkel defect respectively
- Change kT to RT for one mole of defects
- N available substitutional and N_i interstitial lattice sites

- Energy to form a defect involves movement out of lattice site and is always endothermic and must relate to lattice energy and hence size and charge on constituent ions
- Defect formation involves large configurational entropy driving force (increase in degree of disorder of lattice)
- $\Delta \mathbf{G} = \Delta \mathbf{H} \mathbf{T} \Delta \mathbf{S}$
- Calculation of free energy provides equilibrium concentration of defects

$\cdot S = klnW$

- Boltzmann formula for configurational entropy gives total number of ways of distributing n_s cation and n_s anion vacancy defects per unit volume randomly over N lattice sites
- $W_{c} = N!/(N n_{s})!n_{s}!$
- $W_A = N!/(N n_s)!n_s!$
- $W = W_C W_A$

- $\Delta S = 2kln [N!/(N n_s)!n_s!]$
- Stirling's approximation for large N
- InN! ~ NInN N
- $\Delta S = 2k\{NInN (N n_s)In(N n_s) n_sInn_s\}$

- $\Delta G = n_s \Delta H_s 2kT\{NInN (N n_s)In(N n_s) n_sInn_s\}$
- $(d\Delta G/dn_s) = 0$ at equilibrium
- Notes: NInN is constant differential zero
- And differential Inx = 1/x and xInx = 1+Inx and N>>n_s

• $\Delta H_s = 2kTln[(N - n_s)/n_s]$

- $\Delta H_s = 2kTln[(N n_s)/n_s]$
- $n_s = Nexp(-\Delta H_s/2kT)$
- Similar arguments for number of Frenkel's n_F per unit volume where N_i is number of interstitial sites available and N is number of substitutional lattice sites

• $n_F = (NN_i)^{1/2}exp(-\Delta H_F/2kT)$

ENTHALPY OF FORMATION OF INTRINSIC SCHOTTKY AND FRENKEL DEFECTS

defect type	compound	∆H (10 ⁻¹⁹ J)	∆H (eV)
Schottky	MgO	10.57	6.60
	CaO	9.77	6.10
	LiF	3.75	2.34
	LiCI	3.40	2.12
	LiBr	2.88	1.80
	Lil	2.08	1.30
	NaCl	3.69	2.30
	KCI	3.62	2.26
Frenkel	UO ₂	5.45	3.40
	ZrO ₂	6.57	4.10
	CaF ₂	4.49	2.80
	SrF ₂	1.12	0.70
	AgCI	2.56	1.60
	AgBr	1.92	1.20
	beta-Agl	1.12	0.70

Enthalpy of formation scale with lattice energy and size of sites Controlled by electrostatic interactions

ENTHALPY OF FORMATION OF INTRINSIC SCHOTTKY AND FRENKEL DEFECTS

 $\Delta H = 5 \times 10^{-19} J$ 300K n_s/N = 6.12x10⁻²⁷ 1000K $n_s/N = 1.37 \times 10^{-8}$ $\Delta H = 1 \times 10^{-19} J$ 300K $n_s/N = 5.72 \times 10^{-6}$ 1000K n_s/N = 2.67x10⁻²

- Whether Schottky or Frenkel defects found depends on the lower value of the enthalpy of formation
- The concentration of defects depends sensitively on the temperature, pressure, structure, dopants, impurities, nonstoichiometry

EXTRINSIC DEFECTS

- Intrinsic Schottky and Frenkel point defects thermodynamically favored by configurational entropy
- Number depends on enthalpy of formation and temperature
- Extrinsic defects can be introduced intentionally by doping with a higher/lower valency cation or anion (aliovalent) or through the presence of nonstoichiometry (AB_{1-x}) or adventitiously from impurities

ALIOVALENT EXTRINSIC DEFECTS

- Adding CaCl₂ to NaCl
- Preserving electroneutrality
- One Ca²⁺ replaces two Na⁺
- Ca_xNa_{1-2x}Cl
- Creates one cation vacancy enables Na⁺ mobility
- Adding Ag₂S to AgCl
- Preserving electroneutrality
- One S²⁻ replaces two Cl⁻
- AgS_xCl_{1-2x}
- Creates one anion vacancy enables Cl⁻ mobility

EXTRINSIC DEFECTS

- Clearly fraction of extrinsic dopant determines concentration of vacancies
- Adding CaO to Fluorite type ZrO₂ creates O²⁻ substitutional vacancies and facilitates oxide ion conductivity
- Useful for design of chemical sensor and fuel cell materials – e.g. calcium stabilized zirconia which require O²⁻ ion conductivity

COLOR CENTRES

Looks Like an Electron Trapped in a Halide Box

- NaCl exposed to UV, X-rays, electrical discharge gives color
- $2Cl^- + h_V \rightarrow Cl_2^- + Cl_2^-$

NaCl exposed to Na atoms gives color

• Na \rightarrow Na⁺ + \bigcirc

COLOR CENTRES Looks Like an Electron Trapped in a Halide Box

- Rock salt exposed to UV, X-rays, electrical discharge (2Cl- + hv → Cl₂⁻ + e⁻)
- As well as alkali atoms (Na \rightarrow Na⁺ + e⁻)
- Become brightly colored
- Schottky defects favored in rock salt
- Known as a Farbenzentre
- Called an F-centre, or color centre
- Basis of F-center laser

- Color characteristic of host rock salt crystal
- Red shifts with anion size
- Does not shift if Na or K added to NaCl (cation + electron in anion vacancy)
- Electron Spin Resonance ESR spectroscopy shows electron coupling with six cations
- Electron trapped in Oh anion site in rock salt lattice

COLOR CENTRES

- Defines electron trapped in substitutional anion vacancy surrounded by six cation lattice site
- Number of F-centres ~ 1 in 10,000 halide ions
- Charge-balance achieved with H-centre Cl₂⁻ trapped in halide vacancy for UV or X-ray excitation

SPECTROSCOPY OF F-CENTRES ELECTRON IN A BOX MODEL

- Broad absorptions traversing UV (LiF) to near IR (RbBr)
- Absorptions shift red with the size of the halide
- Plot of F-centre absorption energy vs a which is the size of the box (anion trapping site)

• E ~ a^{-1.8}

SPECTROSCOPY OF F-CENTRES ELECTRON IN A BOX MODEL

- Roughly modeled as an electron in a cubic box
- Pressure causes box to shrink and absorption to blue shift to higher energy
- Reduced temperature has a similar effect – lattice contraction, smaller amplitude of lattice vibrations (phonons) – high energy blue color shift

How would you make an F-Centre laser from a grain of salt ???

F Centers in LiF Crystals

Origin of F-Center Color

Electron Trapped in Halide Box – Spectroscopic States

Absorption and Emission Spectra of an F Center in KCl

Why the Large Stokes Shift Between Absorption and Emission ?

MAKING A F-CENTER LASER FROM A GRAIN OF SALT

