
Midterm ECE568: Computer Security Pg. 1 of 7

ECE 568F – Computer Security

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

Mid-term Examination, October 18, 2017

Instructor: David Lie

Name Solutions

Student #

Answer all questions. Write your answers on the exam paper. Show your work and
include any assumptions you make. Each question has a different assigned value, as
indicated.

Permitted: one 8.5 x 11”, two-sided page of notes.
No other printed or written material. No calculator.
NO PHOTOCOPIED MATERIAL
Total time: 50 minutes
Total marks available: 50
Verify that your exam has all the pages.
Only exams written in ink will be eligible for re-marking.

1 /25 2 /25 Total

Midterm ECE568: Computer Security Pg. 2 of 7

Question 1: Buffer Overflows [25 marks]

 Program:

1: int foo (char *arg)
2: {
3: int len;

4: int i;

5: char buf[128];

6: static char * a;

7: static char * b;

8:

9: len = strlen(arg);

10: if (len > 141) len = 141;

11:
12: a = arg;

13: b = buf;

14:

15: for (i = 0; i <= len; i++)

16: *b++ = *a++;

17:

18: return (0);

19: }
20:
21: int lab_main (int argc, char *argv[])
22: {
23: printf ("Target4 running.\n");

24:
25: if (argc != 2)

26: {

27: fprintf(stderr, "target4: argc != 2\n");

28: exit(EXIT_FAILURE);

29: }

30:

31: foo (argv[1]);

32: return (0);

33: }

Registers:

rsp: 0x30521dc0

rbp: 0x30521e60

Stack:

0x30521dc0: 0x00000000 0x00000000 0xffffe4e0 0x00007fff

0x30521dd0: 0x00400cff 0x00000000 0xd138f040 0x0000003f

0x30521de0: 0x00000011 0x00000000 0xf7ffc000 0x00007fff

0x30521df0: 0xffffe1e0 0x00007fff 0xd1072ef5 0x0000003f

0x30521e00: 0x0000000b 0x00000000 0xd138f040 0x0000003f

0x30521e10: 0x0000000a 0x00000000 0x00000010 0x00000000

0x30521e20: 0xffffe1e0 0x00007fff 0xd107224f 0x0000003f

0x30521e30: 0xd138f040 0x0000003f 0x00000010 0x00000000

0x30521e40: 0x00000010 0x00000000 0xd10689d3 0x0000003f

0x30521e50: 0x30522700 0x30524f00 0x00000003 0x00000000

0x30521e60: 0x30521e80 0x00000000 0x004009a9 0x00000000

0x30521e70: 0xffffe1e8 0x00007fff 0x30521eb0 0x00000002

0x30521e80: 0x30521eb0 0x00000000 0x00400a12 0x00000000

Other info:

(gdb) p &buf

$1 = (char (*)[128]) 0x30521dd0

Midterm ECE568: Computer Security Pg. 3 of 7

A program similar to target 4 in lab 1 is given on the previous page. The program is executed with an

input passed in at the command line. The state of the registers and stack just before the program

executes line 16 for the first time. Answer the following questions:

a) What is the location of the return address on the stack that an attacker must overwrite to redirect

execution? Please write your answer as an address in hex. [5 marks]

The return address is stored at at 0x30521e68. The frame pointer points at

0x30521e60 and we know that the return address is usually immediately above the frame

pointer location on the stack

b) For the return address indicated above, at what line in the program does that address point to? [5

marks]

We know foo must return to lab_main from where it’s called, so the return address points

to line 32.

c) From the information in the output of GDB, what can you deduce about the length of argv[1]

that was passed into this particular execution of the program? Please explain your answer. [5

marks]

Since buf is 128 bytes it must span 0x30521dc0 to 0x30521e4f. As a result, len and I

must be somewhere in 0x30521e50- 0x30521e5f since the previous frame pointer is

stored at 0x30521e60. The first 8 bytes of that range are too big to be len or i leaving

only the values 3 and 0. Since i is likely 0 since we just entered the loop, len must be 3.

Midterm ECE568: Computer Security Pg. 4 of 7

d) Describe the attack buffer below. Give me the length of each component of the buffer as well as

the total buffer. Indicate any locations in the buffer that must be set to a particular value and give

a brief explanation. You may assume that the shellcode is 46 bytes just like in the lab. [5 marks]

136 bytes: Shellcode + nops = 128+8 = 136 bytes, this allows us to overwrite len and i.

Stuff after shell code can be anything but must be non-null.

4 bytes: Value for len. Some large value to corrupt len with. Can’t have any null

bytes. Zeros would cause loop to stop copying and we wouldn’t overwrite

len.

4 bytes: Value for i. Return address is 156 bytes from the start of the buffer, so we

must continue writing for at least another 12 bytes. Thus this value should

ideally be 12 smaller than the value written to len, but not too much smaller

or we could write off the top of the stack and crash the program.

8 bytes: Some bytes to overwrite the frame pointer with. Doesn’t matter what but

can’t have nulls or the kernel won’t copy the argument in

4 bytes: Address of the buffer to start execution at. Ideally 0x30521dd0

e) If the locations of len and i where switched, is it still possible to exploit this vulnerability?

Explain your answer. [5 marks]

This means that i is overwritten before len. The only way to keep copying is to make i

smaller than len so that the loop keeps going. However, you can’t introduce null characters

as this causes strlen to make the initial value of len too small and you won’t be able to reach

i. However, without null bytes, you can’t reset i to a small positive number even though you

can now reach it.

One possibility is to try and overwrite i to be negative (since i is signed). However, this also

does not work because x86 is little endian and you have to overwrite the least significant

bytes first, so before you can make it negative, you will still make it a large positive number

first before you can overwrite the most significant bit and make it negative. Unfortunately,

as soon as it’s larger than len, the loop terminates.

As a result, it is no longer possible to exploit this vulnerability.

Note: because there are only 2 answers to this question, full marks require a complete

explanation. The main challenges are the inability to write null bytes and inability to turn i

negative in one write.

Midterm ECE568: Computer Security Pg. 5 of 7

Question 2: Memory corruption defenses and attacks [25
marks]

a) A successful buffer overflow requires the attacker to be able to do 3 things. Please explain those 3

things [3 marks]

1. Overwrite return address

2. Inject code

3. Guess the location of the code

b) For each of the 3 things above, describe a defensive measure that reduces or eliminates an

attacker’s ability to do each of them. Explain your answers [9 marks]

1. Overwrite return address: Stackshield/Stackguard/Canaries, or use a type-safe/memory-

safe language like Java, memory bounds checking & Intel MPX.

2. Inject code: non-executable stacks/memory, or use a type-safe/memory-safe language like

Java.

3. Guess the location of the code: Address space randomization.

Note: CFI on its own does not defend against any of these. CFI makes sure execution transfers

adhere to the source code. However, without non-executable memory, CFI’s guarantees do not

hold. CFI is a defense mainly against ROP, which is an attack to circumvent non-executable

memory.

Midterm ECE568: Computer Security Pg. 6 of 7

c) One way an attacker can defeat Address Space Layout Randomization (ASLR) is if they are able

to exploit a vulnerability that allows them to read beyond the end of a buffer. Describe how they

can exploit such a vulnerability to defeat ASLR [4 marks]

The attacker can read beyond the end of the buffer until they see an address, such as a

return address (which would leak information about the code segment) or a frame pointer

(which would leak information about the stack segment). From this address space leakage,

the attacker can then guess where the stack or code segment is located.

Midterm ECE568: Computer Security Pg. 7 of 7

d) Refer back to the program and accompanying information on page 2. Suppose a vulnerability

allows them to read as many bytes after buf as they want. How many bytes after the end of buf

do they need to read before they can read information that can help them defeat stack-based

ASLR? You can assume that a) the layout of the stack is exactly the same as shown with this new

vulnerability and b) they have the exact copy of the program available to them for analysis. [4

bytes]

In stack-based ASLR, the location of the stack is randomized. Thus, the attacker needs to

learn the location of elements on the stack. The first pointer to elements on the stack is the

frame pointer, located at 0x30521e60. This pointer is 16 bytes after the end of buf, so the

attacker has to read for at least 16+8= 24 bytes (64-bit addresses) to read the entire frame

pointer.

e) An adversary wants to construct an ROP attack buffer that calls the system call exit(-1). She

analyzes a binary and finds the following gadgets available to them at the indicated addresses (we

assume a 32-bit code ABI). Hint: the system call number for exit() is zero:
0x00a12345: int 0x80

ret

0x00a19425: mov 0x0, eax

ret

0x00a29493: mov 0x1, ebx

ret

0x00a31495: add ebx, ebx

ret

0x00a35946: pop ebx

ret

0x00a36723: push ebx

ret

Please write the buffer the attacker will want to overwrite a return address on the stack with. For

clarity, put one 32-bit value on each line. [5 marks]
0x00a19425

0x00a35946

0xfffffffff (-1)

0x00a12345

Explanation:

 0x00a19425 Puts 0x0, the system call

number, in %eax

 0x00a35946 pops the next value off the

stack into %ebx, the argument to exit().

 0xfffffffff(-1) this gets popped off

and placed in %ebx. Because it’s a pop,

the stack pointer now points to the next

address below.

 0x00a12345 this generates the system

call interrupt.
A (bad) alternative is to put 1 in %ebx and add it

to itself so many times that it wraps to -1. This is

not workable in practice as you can’t get that

many values on the stack!

