University of Toronto
Faculty of Applied Science and Engineering

Final Exam
December 2014

ECE253 - Digital and Computer Systems

Examiner — Prof. Stephen Brown

Print:

First Name Last Name

Student Number

1. There are 6 questions and 18 pages. Do all questions. The duration of the exam is 2.5 hours.

2. ALL WORK IS TO BE DONE ON THESE SHEETS. You can use the blank pages included at the
end of the exam (Pages 15 — 17) if you need more space. Be sure to indicate clearly if your work
continues elsewhere.

3. Closed book. One 2-sided hand-written aid sheet is permitted.

4. No calculators are permitted.

1[)5]

17
28]

3[8]

4[12]

51[10]

6 [12]
f

Total [65]

Page 1 of 18

1. Short answers:

[2 marks] (a) Perform the following additions of 2’s complement numbers.
i 10000000 i, 11111111
01111111 11111110
10000001 11111101
01111110 11111100
+00000010 +00001010
[1 mark each] 00000000 00000000
[1 mark] (b) For the numbers in part (a) are the results you calculated correct 2’s complement sums, or not?
Answer for (a) i. Yes
[0.5 mark each]
Answer for (a) ii. Yes
[3 marks] (c) Consider the ARM code fragment shown below. When this code is being executed, an interrupt

occurs when the ARM processor is executing the instruction ADD R1, R2, R3. Assume that
interrupts are enabled, and that the interrupt is generated by the timer that you used in Lab
Exercise 10. Assume the following values for ARM registers: R1 =1, R2 =2, R3 =3.

.text
.global _start
_start: BL somesubroutine
LDR R10, =0xFF200040
LDR R6, [R10] The definition of an "interrupted instruction" changed in the

ADD R1, R2, R3 lecture notes this year to say that a "current instruction” is
! ! completed instead of aborted if an interrupt occurs. We
still accepted answers using the previous years' definition.

Fill in the values that the registers listed below will have when the ARM processor reaches, but
has not yet executed, the branch instruction at the IRQ exception vector. Assume that the main
program is stored in the memory starting at address 0x40.

[1 mark each] pc 0x18 LR 0x54 R1 0x5
will also accept: Ox50 Ox1
[2 marks] (d) In part (c) of this question, you were told that the main program is stored in the memory starting

at address 0x40. Would it be okay if this main program were stored in the memory starting at
address 0 instead? Explain your reasoning.

Answer No, it would overwrite the exception vector table.

1 mark for "vector table"
1 mark for "no" or "overwrite"

Page 2 of 18

[3 marks] (e) Consider the ARM code fragment shown below. This code finds the greatest common divisor
(GCD) of the two numbers found in registers RO and R1.

GCD: CMP RO, R1
BEQ DONE
BLT LESS
SUB RO, RO, R1
B GCD

LESS: SUB R1, R1, RO
B GCD

DONE : B DONE

In this code only branch instructions make use of conditions. But the ARM processor sup-
ports conditional execution of most instructions, including SUB. In the space below re-write the
above code that finds the GCD using conditional SUB instructions. Your goal is to use as few
instructions as possible, while still implementing the same GCD algorithm.

Answer

GCD: CMP RO, R1
SUBGT RO, R1
SUBLT R1, RO

BNE GCD
DONE: B DONE
1 mark to collapse SUBGT
1 mark to collapse SUBLT
1 mark to collapse BNE
[2 marks] (f) Given functions f and g, below, for what values of the inputs «a, b, and ¢ does f # g?

f=ac+ac+ab

g=bc+ab+ac

Answer: (a,b,c)=(1,1,0) abc f ¢
2 marks 00 1 1
-1 for each additional (incorrect) response 001 1 1
010 1 1
011
100
101 1 1
110 1
111 1 1

Page 3 of 18

[2 marks] (g) Use Boolean algebra to minimize the following function. Show your work and specify which
identity is used in each of your steps.

Identity 2Z+ (zy +)2
13a TZ + a2
14a xr
1 mark each
[2 marks] (h) Use Boolean algebra to minimize the following function. Show your work and specify which

identity is used in each of your steps.

Identity be+ab+ac+abe
12a be + ab + a(c + be)
16a bc + ab + a(c + b)
12a bc + ab + ac + ab
14a bc+ b+ ac
16a c+b-+ac
16a ct+b+a
Roughly:
0.5 marks for first two steps
0.25 for each of last four steps

Page 4 of 18

[8 marks]

2. Karnaugh maps:

X1%) X%y

3% 00 01 11 10 3% 00 01 11 10
00| 1 |fo o1 oot | 1| o |1
ol 1 [lojo |1 ol ol oo |l
1mpo|1]o 1mjftfofofo
1o 1|lo ' wfar]o 1|1

Q) (ii)

oy X%y ox X%

374 00 01 11 10 374 00 01 11 10
oo|r f1]o]|d 00| o |t | o1
ol oL 1] o orflolofo]o
1o fo|fr |1 NN RN S O B
1fdlo ||l wf1]of1]o

(iii) (iv)
(a) For the function in Karnaugh map (i) above list all minimal products-of-sums solutions:

(T2 + x3) (22 + T3) (71 + T3) 1mark
(T2 + x3) (22 + T3) 1 mark -0.5 per error/extra

(b) For the function in Karnaugh map (ii) above list all prime implicants:

(Z17223), (Z17374), (217273), (212374)
0.5 mark per term -0.5 per error/extra

(c) For the function in Karnaugh map (iii) above list all minimal sum-of-products solutions:

(z123) + (27T374) + (T17374)
0.5 mark per term -0.5 per error/extra

(d) For the function in Karnaugh map (iv) above, let g = x1 @ x»2. Fill in the logic expression below.
Make the simplest expression you can, using g as indicated.

f= 23D x4 (9 + %3 +(9)
or
T3la T34 Page 5 of 18
1 mark 1 mark

or

0.5 each product term If two terms were swapped, 1 mark/2

3. Finite State Machines:

[8 marks] Consider the finite state machine below.

Reset

(a) What does this FSM “do”? That is, for what values of w does this FSM produce z = 1?

Answer:

1 mark Accepts a 111 or 101 sequence, overlaps allowed

(b) On the next page, write complete Verilog code for the above FSM. Assume that the FSM will
be implemented on the DE1-SoC board, and connect the w input to switch SWy, the reset input
to KEY, and the clock signal to KEY;. Display the current state on the LEDR outputs. Assign a
state coding of your preference.

Page 6 of 18

[7 marks] Answer for Verilog code for the FSM:

module FSM (
input [1:0] KEY,
input [0:0] Sw,
output [3:0] LEDR
)i

wire w = SW[O];

wire reset = KEY[O];
wire clk = KEY[1];
wire z;

parameter A=0,B=1,C=2,D=3,E=4,F=5;

reg[2:0] state, next;

always @(posedge clk)
if (reset) state <= A;
else state <= next;

always@(*) begin
case (state)

A: next = w ? B : A;
B: next =w ? C : D;
C: next =w ? E : D,
D: next =w?F : A;
E: next =w ? E : D;
F: next =w ? C : D;
default: next = 3'hx;
endcase
end
assign z = (state == E)

assign LEDR[3:0] = {z,

endmodule

|| (state
state};

Page 7 of 18

1 mark: Port declarations/connections

2 marks: State flip-flops (1) with reset (1)

3 marks: State transitions

Quartus doesn't generate a latch even without a
default case here. Omitting default case accepted.

== F);
We didn't ask for the output z
to be connected. Oops.

1 mark: Output current state

[12 marks] 4. Trace an ARM Program:

Consider the ARM code shown below. Note that the address that each instruction would have in the
memory is shown to the left of the code.

text
.global _start
_start:

00000000 LDR SP, 0x20000
00000004 LDR R4, =N
00000008 LDR RO, [R4], #4
0000000C BL HELLO
00000010 STR RO, [R4]
00000014 END: B END /* wait here */
00000018 HELLO: PUSH {R4,LR}
0000001C MOV R4, RO
00000020 CMP RO, #1
00000024 BEQ GOODBYE
00000028 SUB RO, #1
0000002C BL HELLO
00000030 MUL RO, R4, RO
00000034 GOODBYE: POP {R4, PC}

N: .word 3

F: .space 4

.end

(a) What does this code “do”? That is, for a given value of N, what result is stored in F?

Answer __Computes factorial of value located at address N.

1 mark: Factorial
1 mark: Value came from address N

Page 8 of 18

(b) If this program is executed on the ARM processor, what would be the values of the ARM reg-
isters shown below the first time the code reaches, but has not yet executed, the instruction at
address 0x30. Also, show in the space below the contents of the stack in memory at this point
in time (fill in the memory addresses on the left, and show the data stored in each location). For
memory values that are not known, if any, write N/A in the corresponding box.

[3 marks]:

[7 marks]

0.5 marks each
RO 1 R1 N/A R4 2
R ox1FEFO R 0x30 RIS 0x30
Memory Address Content
N/A
N/A -1 for extra stuff
1 mark: addresses N/A
1FFE8 0x2 1 mark >
1FFEC 0x30 1 mark
LFFFO 0x3 Lmark | 1 if swapped
R4, LR} pairs
1FFF4 0x30 L mark /R ERIP
1FFF8 0x3C 1 mark
1FFFC 0x10 1 mark
20000 N/A -1 if this box is missing and

Page 9 of 18

everything else shifted down

5.

[10 marks]

[3 marks]

Assembly Language Subroutine:

Consider the ARM unsigned divide assembly language instruction
UDIV Rd, Rn, Rm

The result is defined as the integer operation Rd = Rn/Rm. Since the UDIV instuction isn’t imple-
mented in the ARM A9 processor used in this course, you are to write a subroutine, called DIVIDE,
that performs a division operation. Your DIVIDE subroutine should implement the equivalent of the
instruction “UDIV RO, RO, R1”. Thus, the inputs to DIVIDE should be passed to the subroutine in
registers R0 and R1, and the result should be returned in register RO. The result should have the
integer quotient of R0/R1 in the least-significant halfword of R0, and the remainder should be in the
most-significant halfword of R0. Assume that R0 and R1 contain unsigned values, and that R1 # 0.

You need to provide a main program that calls your DIVIDE subroutine. Part of this main program is
shown below; fill in the rest of the code. The values of arguments N and M that are used to produce
the result D = N/M are stored in memory as shown in the code—your main program needs to load
these values from memory and pass them to the subroutine. After the subroutine returns, your main
program should store the result into memory location D. Write the code for DIVIDE in the space on
the next page. Include meaningful comments in your code!

text
.global _start
_start:
LDR R4, =N
2 marks loading values LDR RO, [R4], #4 // RO = N
frommemory DR R1, [R4], #4 // R1 = M
0.5 function call BL DIVIDE
0.5 storing result to memory STR RO, [R4]
END: B END # wait here
.data
N: .word 10
M: .word 3
D: .space 4
.end

Page 10 of 18

[5 marks]

[2 marks]

Answer space for the DIVIDE subroutine.

DIVIDE:

D_LOOP:

FINISH:

.global DIVIDE

MOV
CMP
BLT
ADD
SUBS
B

LSL
ORR

MOV

R3, #0 0.5:initialization

RO, R1 2: compare and branch

FINISH

R3, #1 // increment quotient

RO, R1 // N =N - M 2:subtract and increment

D_LOOP 0.5: loop branch

RO, #16 // R3 has quotient, RO has remainder

RO, R3 // form the final result
1: Packing result into one 4-byte word

PC, LR 1:return from function

Page 11 of 18

[10 marks]

6. Exceptions:

In Question 5 you called your DIVIDE subroutine to implement unsigned division. Your DIVIDE
subroutine is equivalent to the exact instruction “UDIV R0, RO, R1”. If the operand registers are not
exactly R0, RO, R1, then your DIVIDE subroutine can’t be used. For this question you are to create
a somewhat more general unsigned division operation that will work for any combination of registers
R0 — R12. For example, it has to work with “UDIV R6, R4, R5”, or “UDIV R8, R6, R7”, or “UDIV
RO, R1, R2”, and so on.

You will implement the unsigned division operation by using the ARM SVC instruction. As discussed
in lectures, when the SVC instruction is executed the ARM processor takes the SVC exception. The
SVC instruction takes an immediate argument (maximum of 26 bits), and the assembler includes that
argument in the machine code for the instruction. The machine-code format of the SVC instruction is
shown below.

31 28 27 24 23 0

Cond 1111 Comment field (ignored by Processor)

[

Condition field

For example, the instruction “SVC #0” produces the machine code EFO00000, and the instruction
“SVC #FF” produces the machine code EFOO00FF. In this question we use the SVC argument to
specify which registers operands are involved. For example, “UDIV R6, R4, R5” is specified as
“SVC 0b011001000101”, and “UDIV RS, R6, R7” is specified as “SVC 0b100001100111”.

You have to write an SVC exception handler. It has to examine the machine code that caused the
exception to determine what register operands are involved. Assume that only registers in the range
RO to R12 will be used, and make the same assumptions as for Question 5 regarding the division
operation (Rd = Rn/Rm, unsigned integers, argument Rm# 0, quotient and remainder in Rd).

An exception vector table and a main program that invokes two examples of the “UDIV” instruction
is given on the next page. Complete the code shown for the SVC exception handler. Think about the
comment that is shown in the code—it provides a hint about how your exception handler code can
access the contents of registers Rn, Rn, and Rd. Include meaningful comments in your code!

Page 12 of 18

.section .vectors, ’ax”

B _start // reset vector
.word 0 // undefined instruction vector
B SERVICE_SVC // software interrrupt vector
.word 0 // aborted prefetch vector
.word 0 // aborted data vector
.word 0 // unused vector
.word 0 /I IRQ interrupt vector
.word 0 /I FIQ interrupt vector
.text
.global _start
_start:
// Main program
MOV SP, #0x20000 // initialize stack pointer
MOV R4, #10
MOV RS, #3
SvC 0b011001000101 // execute "UDIV R6, R4, R5”
// result is in R6
MOV R6, #20
MOV R7, #6
SvC 0b100001100111 /l execute "UDIV R8, R6, R7”
// result is in R8
END: B END # wait here
.end

Complete the SERVICE_SVC code on the following page.

Page 13 of 18

.global
SERVICE_SVC: PUSH

SERVICE_SVC
{RO-R12}

/I After executing this instruction, the contents of

// registers specified for the "UDIV” operation can be
// gotten from the stack. RO is at the top of the stack,
// R1 below that, . . ., and R12 is at the bottom of the stack

// read the SVC

// R2 has index

// RO has index

R3, #0b1111 // R1 has index

// convert index N to
// convert index M to
// convert index D to

LDR R3, [LR, #-4]
LSR R2, R3, #8
AND R2, #0b1111
LSR RO, R3, #4
AND RO, #0b1111
AND R1,
LSL RO, #2
LSL R1, #2
LSL R2, #2
LDR RO, [SP, RO]
LDR R1, [SP, R1]
MOV R3, #0
D_LOOP: CMP RO, R1
BLT FINISH
ADD R3, #1 //
SUBS RO, R1 //
B D_LOOP
FINISH: LSL RO, #16
ORR RO, R3
STR RO, [SP, R2]
POP {RO-R12}
SUBS PC, LR, #0

// get argument N
// get argument M

increment quotient

N=N-M

("DIV") machine code

of Rd

3 marks:
£ Extract operand
of Rn from SVC imm24
of Rm

word amount (x 4) 1.5marks
word amount (x 4) Scale offset
word amount (x 4) towordsize

1.5 marks:
Read from stack

1 mark:
Do a division (or BL DIVIDE)

// R3 has quotient, RO has remainder

// form the final

// store result into Rd

// restore regs

result

3 marks:
Store result into stack,
Pop regs off stack

// return from SVC exception Return from SVC

Page 14 of 18

Extra answer space for any question on the test, if needed:

Page 15 of 18

Extra answer space for any question on the test, if needed:

Page 16 of 18

Extra answer space for any question on the test, if needed:

Page 17 of 18

Boolean Identities

10a.
10b.
11a.
11b.
12a.
13a.
14a.
15a.
16a.
17a.

rT-yYy=vy-x
rT+y=y+zx

- (y-2)=(z-y) 2
v+ (y+2)=(r+y) +2
r-(y+z2)=x-y+x-2
r+r-y=2x

Commutative
Associative
Distributive
Absorption
Combining

DeMorgan’s theorem

Consensus

Page 18 of 18

