
10

17

University of Toronto
Faculty of Applied Science and Engineering

Final Exam
December 2014

ECE253 – Digital and Computer Systems

Examiner – Prof. Stephen Brown

Print:

First Name Last Name

Student Number

1. There are 6 questions and 18 pages. Do all questions. The duration of the exam is 2.5 hours.

2. ALL WORK IS TO BE DONE ON THESE SHEETS. You can use the blank pages included at the
end of the exam (Pages 15 − 17) if you need more space. Be sure to indicate clearly if your work
continues elsewhere.

3. Closed book. One 2-sided hand-written aid sheet is permitted.

4. No calculators are permitted.

1 [15]

2 [8]

3 [8]

4 [12]

5 [10]

6 [12]

Total [65]

Page 1 of 18

1

00000000 00000000[1dmarkdeach]

[1dmarkdeach]

1dmarkdford.vectordtable.
1dmarkdford.no.dord.overwrite.

Yes

Yes

0x540x18 0x5

No,ditdwoulddoverwritedthedexceptiondvectordtable.

[0.5dmarkdeach]

0x50 0x1Willdalsodaccept:

Theddefinitiondofdand.interrupteddinstruction.dchangeddindthe
lecturednotesdthisdyeardtodsaydthatdad.currentdinstruction.disd
completeddinsteaddofdaborteddifdandinterruptdoccurs.dWe
stilldaccepteddanswersdusingdthedpreviousdyearsyddefinition.

1. Short answers:

(a) Perform the following additions of 2’s complement numbers.[2 marks]

i. 1 0 0 0 0 0 0 0 ii. 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0

+ 0 0 0 0 0 0 1 0 + 0 0 0 0 1 0 1 0

(b) For the numbers in part (a) are the results you calculated correct 2’s complement sums, or not?[1 mark]

Answer for (a) i.

Answer for (a) ii.

(c) Consider the ARM code fragment shown below. When this code is being executed, an interrupt[3 marks]
occurs when the ARM processor is executing the instruction ADD R1, R2, R3. Assume that
interrupts are enabled, and that the interrupt is generated by the timer that you used in Lab
Exercise 10. Assume the following values for ARM registers: R1 = 1, R2 = 2, R3 = 3.

.text

.global _start

_start: BL somesubroutine
LDR R10, =0xFF200040
LDR R6, [R10]
ADD R1, R2, R3
...

Fill in the values that the registers listed below will have when the ARM processor reaches, but
has not yet executed, the branch instruction at the IRQ exception vector. Assume that the main
program is stored in the memory starting at address 0x40.

PC LR R1

(d) In part (c) of this question, you were told that the main program is stored in the memory starting[2 marks]
at address 0x40. Would it be okay if this main program were stored in the memory starting at
address 0 instead? Explain your reasoning.

Answer

Page 2 of 18

2

(a,db,dc)d=d(1,d1,d0)

GCD: CMP R0, R1
 SUBGT R0, R1
 SUBLT R1, R0
 BNE GCD

DONE: B DONE

1dmarkdtodcollapsedSUBGT
1dmarkdtodcollapsedSUBLT
1dmarkdtodcollapsedBNE

2dmarks

abc f g
000 1 1
001 1 1
010 1 1
011
100
101 1 1
110 1
111 1 1

-1dfordeachdadditionald(incorrect)dresponse

(e) Consider the ARM code fragment shown below. This code finds the greatest common divisor[3 marks]
(GCD) of the two numbers found in registers R0 and R1.

GCD: CMP R0, R1
BEQ DONE
BLT LESS
SUB R0, R0, R1
B GCD

LESS: SUB R1, R1, R0
B GCD

DONE: B DONE

In this code only branch instructions make use of conditions. But the ARM processor sup-
ports conditional execution of most instructions, including SUB. In the space below re-write the
above code that finds the GCD using conditional SUB instructions. Your goal is to use as few
instructions as possible, while still implementing the same GCD algorithm.

Answer

(f) Given functions f and g, below, for what values of the inputs a, b, and c does f 6= g?[2 marks]

f = a c+ ac+ ab

g = bc+ ab+ a c

Answer:

Page 3 of 18

3

13a

14a

12a

16a

12a

14a

16a

16a

1 mark each

Roughly:
0.5 marks for first two steps
0.25 for each of last four steps

(g) Use Boolean algebra to minimize the following function. Show your work and specify which[2 marks]
identity is used in each of your steps.

xz + (xy + x)zIdentity

(h) Use Boolean algebra to minimize the following function. Show your work and specify which[2 marks]
identity is used in each of your steps.

bc+ ab+ a c+ a bcIdentity

Page 4 of 18

4

or

1 mark

1 mark -0.5 per error/extra

0.5 mark per term -0.5 per error/extra

0.5 mark per term -0.5 per error/extra

1 mark
or

0.5 each product term

1 mark

[2]

[2.5]

[1.5]

[2]

If two terms were swapped, 1 mark/2

2. Karnaugh maps:[8 marks]

x1x2x3x4

1

00 01 11 10

0 0 1

1 0 0 1

0 1 0 0

0 1 0 0

00

01

11

10

(i)

x1x2x3x4

1

00 01 11 10

1 0 d

0 1 1 0

0 0 1 1

d 0 1 1

00

01

11

10

(iii)

x1x2x3x4

1

00 01 11 10

1 0 1

0 0 0 1

1 0 0 0

1 0 1 1

00

01

11

10

(ii)

x1x2x3x4

0

00 01 11 10

1 0 1

0 0 0 0

1 1 1 1

1 0 1 0

00

01

11

10

(iv)

(a) For the function in Karnaugh map (i) above list all minimal products-of-sums solutions:

(b) For the function in Karnaugh map (ii) above list all prime implicants:

(c) For the function in Karnaugh map (iii) above list all minimal sum-of-products solutions:

(d) For the function in Karnaugh map (iv) above, let g = x1⊕x2. Fill in the logic expression below.
Make the simplest expression you can, using g as indicated.

f = ·(g) + ·(g)

Page 5 of 18

5

Accepts a 111 or 101 sequence, overlaps allowed1 mark

3. Finite State Machines:

Consider the finite state machine below.[8 marks]

A 0

B 0

D 0C 0

F 1

w

w

w

ww

w

Reset

E 1

w

w

w

w w

w

(a) What does this FSM “do”? That is, for what values of w does this FSM produce z = 1?

Answer:

(b) On the next page, write complete Verilog code for the above FSM. Assume that the FSM will
be implemented on the DE1-SoC board, and connect the w input to switch SW0, the reset input
to KEY0, and the clock signal to KEY1. Display the current state on the LEDR outputs. Assign a
state coding of your preference.

Page 6 of 18

6

modulewFSMwA
winputw[@{y]wKEY4
winputw[y{y]wSW4
woutputw[<{y]wLEDR
B}

wwirewww=wSW[y]}
wwirewresetw=wKEY[y]}
wwirewclkw=wKEY[@]}
wwirewz}

wparameterwA=y4B=@4C=f4D=<4E=*4F=b}
wreg[f{y]wstate4wnext}
w
walwaysw@AposedgewclkB
wwifwAresetBwstatew<=wA}
wwelsewstatew<=wnext}
ww
ww
walways@ACBwbegin
wwcasewAstateB
wwwA{wnextw=www?wBw{wA}
wwwB{wnextw=www?wCw{wD}
wwwC{wnextw=www?wEw{wD}
wwwD{wnextw=www?wFw{wA}
wwwE{wnextw=www?wEw{wD}
wwwF{wnextw=www?wCw{wD}
wwwdefault{wnextw=w<ahx}
wwendcase
wend
w
wassignwzw=wAstatew==wEBw||wAstatew==wFB}
wassignwLEDR[<{y]w=w{z4wstate}}

endmodule

[7dmarks]

We didn't ask for the output z

to be connected. Oops.

Quartus doesn't generate a latch even without a

default case here. Omitting default case accepted.

2dmarks:dStatedflip-flopsd(1)dwithdresetd(1)

3dmarks:dStatedtransitions

1dmark:dOutputdcurrentdstate

1dmark:dPortddeclarations/connections

Answer for Verilog code for the FSM:

Page 7 of 18

7

Computes factorial of value located at address N.

1 mark: Factorial
1 mark: Value came from address N

That is, for a given value of N, what result is stored in F?

4. Trace an ARM Program:[12 marks]

Consider the ARM code shown below. Note that the address that each instruction would have in the
memory is shown to the left of the code.

.text

.global start
start:

00000000 LDR SP, 0x20000

00000004 LDR R4, =N
00000008 LDR R0, [R4], #4
0000000C BL HELLO

00000010 STR R0, [R4]

00000014 END: B END /* wait here */

00000018 HELLO: PUSH {R4, LR}
0000001C MOV R4, R0

00000020 CMP R0, #1
00000024 BEQ GOODBYE

00000028 SUB R0, #1
0000002C BL HELLO

00000030 MUL R0, R4, R0

00000034 GOODBYE: POP {R4, PC}

N: .word 3
F: .space 4

.end

(a) What does this code “do”?

Answer

Page 8 of 18

8

1 NyA 2

lx1FFFl lx3l lx3l

[3omarks]:olv5omarksoeach

lx3C

lx3

lx3l

NyA

lx1l

lx2

lx3l

1FFFl

1FFF4

1FFF8

1FFEC

1FFE8

NyA

NyA

NyA
[7omarks]

1omark

1omark

1omark

1omark

1omark

1omark

1omark:oaddresses

g1oforoextraostuff

g1oifoswapped
{R4noLR}opairs

g1oifothisoboxoisomissingoand
everythingoelseoshiftedodown

(b) If this program is executed on the ARM processor, what would be the values of the ARM reg-
isters shown below the first time the code reaches, but has not yet executed, the instruction at
address 0x30. Also, show in the space below the contents of the stack in memory at this point
in time (fill in the memory addresses on the left, and show the data stored in each location). For
memory values that are not known, if any, write N/A in the corresponding box.

R0 R1 R4

R13 R14 R15

Memory Address Content

1FFFC

20000

Page 9 of 18

9

LDR R4, =N
LDR R0, [R4], #4 // R0 = N
LDR R1, [R4], #4 // R1 = M

BL DIVIDE
STR R0, [R4]

[3 marks]

2 marks loading values
from memory

0.5 function call

0.5 storing result to memory

5. Assembly Language Subroutine:

Consider the ARM unsigned divide assembly language instruction[10 marks]

UDIV Rd, Rn, Rm

The result is defined as the integer operation Rd = Rn/Rm. Since the UDIV instuction isn’t imple-
mented in the ARM A9 processor used in this course, you are to write a subroutine, called DIVIDE,
that performs a division operation. Your DIVIDE subroutine should implement the equivalent of the
instruction “UDIV R0, R0, R1”. Thus, the inputs to DIVIDE should be passed to the subroutine in
registers R0 and R1, and the result should be returned in register R0. The result should have the
integer quotient of R0/R1 in the least-significant halfword of R0, and the remainder should be in the
most-significant halfword of R0. Assume that R0 and R1 contain unsigned values, and that R1 6= 0.

You need to provide a main program that calls your DIVIDE subroutine. Part of this main program is
shown below; fill in the rest of the code. The values of arguments N and M that are used to produce
the result D = N/M are stored in memory as shown in the code—your main program needs to load
these values from memory and pass them to the subroutine. After the subroutine returns, your main
program should store the result into memory location D. Write the code for DIVIDE in the space on
the next page. Include meaningful comments in your code!

.text

.global start
start:

END: B END # wait here

.data
N: .word 10
M: .word 3
D: .space 4

.end

Page 10 of 18

10

ttttttttMOVttR3fto0
D_LOOP:tCMPttR0ftR1
ttttttttBLTttFINISH
ttttttttADDttR3fto1ttttt//tincrementtquotient
ttttttttSUBStR0ftR1ttttt//tNt=tNtltM
ttttttttBtttD_LOOP

FINISH:tLSLttR0fto16ttttt//tR3thastquotientftR0thastremainder
ttttttttORRttR0ftR3ttttt//tformtthetfinaltresult

ttttttttMOVttPCftLR

[5ymarks]

[2ymarks]

0.5:yinitialization

2:ycompareyandybranch

2:ysubtractyandyincrement
0.5:yloopybranch

1:yPackingyresultyintoyoney4-byteyword

1:yreturnyfromyfunction

Answer space for the DIVIDE subroutine.

.global DIVIDE
DIVIDE:

Page 11 of 18

11

6. Exceptions:

In Question 5 you called your DIVIDE subroutine to implement unsigned division. Your DIVIDE[10 marks]
subroutine is equivalent to the exact instruction “UDIV R0, R0, R1”. If the operand registers are not
exactly R0, R0, R1, then your DIVIDE subroutine can’t be used. For this question you are to create
a somewhat more general unsigned division operation that will work for any combination of registers
R0−R12. For example, it has to work with “UDIV R6, R4, R5”, or “UDIV R8, R6, R7”, or “UDIV
R0, R1, R2”, and so on.

You will implement the unsigned division operation by using the ARM SVC instruction. As discussed
in lectures, when the SVC instruction is executed the ARM processor takes the SVC exception. The
SVC instruction takes an immediate argument (maximum of 26 bits), and the assembler includes that
argument in the machine code for the instruction. The machine-code format of the SVC instruction is
shown below.

For example, the instruction “SVC #0” produces the machine code EF000000, and the instruction
“SVC #FF” produces the machine code EF0000FF. In this question we use the SVC argument to
specify which registers operands are involved. For example, “UDIV R6, R4, R5” is specified as
“SVC 0b011001000101”, and “UDIV R8, R6, R7” is specified as “SVC 0b100001100111”.

You have to write an SVC exception handler. It has to examine the machine code that caused the
exception to determine what register operands are involved. Assume that only registers in the range
R0 to R12 will be used, and make the same assumptions as for Question 5 regarding the division
operation (Rd = Rn/Rm, unsigned integers, argument Rm 6= 0, quotient and remainder in Rd).

An exception vector table and a main program that invokes two examples of the “UDIV” instruction
is given on the next page. Complete the code shown for the SVC exception handler. Think about the
comment that is shown in the code—it provides a hint about how your exception handler code can
access the contents of registers Rn, Rn, and Rd. Include meaningful comments in your code!

Page 12 of 18

12

.section .vectors, ”ax”

B start // reset vector
.word 0 // undefined instruction vector
B SERVICE SVC // software interrrupt vector
.word 0 // aborted prefetch vector
.word 0 // aborted data vector
.word 0 // unused vector
.word 0 // IRQ interrupt vector
.word 0 // FIQ interrupt vector

.text

.global start
start:

// Main program
MOV SP, #0x20000 // initialize stack pointer
MOV R4, #10
MOV R5, #3
SVC 0b011001000101 // execute ”UDIV R6, R4, R5”
// result is in R6
MOV R6, #20
MOV R7, #6
SVC 0b100001100111 // execute ”UDIV R8, R6, R7”
// result is in R8

END: B END # wait here

.end

Complete the SERVICE SVC code on the following page.

Page 13 of 18

13

8888LDR88RTM8[LRM80PF]8888OO8read8the8SVC8fNDIVNv8machine8code
8888LSR88RBM8RTM80=
8888AND88RBM80_b::::888888OO8RB8has8index8of8Rd
8888LSR88R_M8RTM80F
8888AND88R_M80_b::::888888OO8R_8has8index8of8Rn
8888AND88R:M8RTM80_b::::88OO8R:8has8index8of8Rm
8888
8888LSL88R_M80B88888OO8convert8index8N8to8word8amount8fx8Fv
8888LSL88R:M80B88888OO8convert8index8M8to8word8amount8fx8Fv
8888LSL88RBM80B88888OO8convert8index8D8to8word8amount8fx8Fv

8888LDR88R_M8[SPM8R_]888OO8get8argument8N
8888LDR88R:M8[SPM8R:]888OO8get8argument8M

8888MOV88RTM80_
D_LOOPl88CMP88R_M8R:
8888BLT88FINISH
8888ADD88RTM80:888888OO8increment8quotient
8888SUBS88R_M8R:88888OO8N8p8N8P8M
8888B888D_LOOP

FINISHl88LSL88R_M80:q888OO8RT8has8quotientM8R_8has8remainder
8888ORR88R_M8RT888888888OO8form8the8final8result

8888STR88R_M8[SPM8RB]888OO8store8result8into8Rd
8888POP88{R_PR:B}8888888OO8restore8regs
8888SUBS88PCM8LRM80_8888OO8return8from8SVC8exception

8

3Dmarks:
ExtractDoperand
fromDSVCDimm24

1.5Dmarks:
ScaleDoffset
toDwordDsize

1.5Dmarks:
ReadDfromDstack

1Dmark:
DoDaDdivisionD,orDBLDDIVIDEP

3Dmarks:
StoreDresultDintoDstack,
PopDregsDoffDstack
ReturnDfromDSVC

.global SERVICE SVC
SERVICE SVC: PUSH {R0-R12} // After executing this instruction, the contents of

// registers specified for the ”UDIV” operation can be
// gotten from the stack. R0 is at the top of the stack,
// R1 below that, . . ., and R12 is at the bottom of the stack

Page 14 of 18

14

Extra answer space for any question on the test, if needed:

Page 15 of 18

15

Extra answer space for any question on the test, if needed:

Page 16 of 18

16

Extra answer space for any question on the test, if needed:

Page 17 of 18

17

Boolean Identities

10a. x · y = y · x Commutative
10b. x+ y = y + x

11a. x · (y · z) = (x · y) · z Associative
11b. x+ (y + z) = (x+ y) + z

12a. x · (y + z) = x · y + x · z Distributive
13a. x+ x · y = x Absorption
14a. x · y + x · y = x Combining
15a. x · y = x+ y DeMorgan’s theorem
16a. x+ x · y = x+ y

17a. x · y + y · z + x · z = x · y + x · z Consensus

Page 18 of 18

18

