UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING

ECE253F - Digital and Computer Systems
Final Examination

December 12, 2019 2:00pm - 4:30pm
Duration: 150 minutes

Examiners: Profs. N. Enright Jerger and J. Anderson
Exam Type D: Examiner specified aids: One single sheet of letter size paper (8.5 x 11 inch), both
sides may be used.
Calculator Type 4: No calculators or other electronic devices are allowed.
All questions are to be answered on the examination paper. There is one extra page at the end and
you may use the back of a page. If you use more than the given space, please direct the marker to
the appropriate page and indicate clearly on that page which question(s) you are answering there.
It is your responsibility to make sure the marker can find your solution.

The number of marks for each question are indicated.

The examination has 18 pages, including this one.

Last Name: First Name:

Student Number: UTORID:

This page is only for marking purposes.

MARKS
1 2 3 4 5 6 7 8 9 10 Total
/6| /4 /6| /6| /9 /12 /7| /8| /16| /10| /84

Question 1 [6 Marks]

Fill in the following table with the appropriate number conversions:

8-bit 2’s complement decimal hexadecimal

11001110

~ 20 C &

\(5D o 1L C+

5B
OLolvout CH

\ \MU\(e

Question 2 [4 Marks]
Consider the following ARM assembly language program:

.text
.global _start
_Start:
LDR R1,=LIST
MOV R2, #0x0
MOV R4, R2
LOOP:
ADD R5, R1l, R2
LDR R3, [R5]
ADD R4, R4, R3
CMP R3, #0
BEQ END
BLT END
ADD R2,R2, #0x4
B LOOP
END:
B END
LIST:
.word 5,8,9,-2,6,-1,0
.end

State the values stored in registers R2, R3 and R4 after the execution of the program (i.e. when the
program reaches the "END: B END” instruction).

VM/[R2 = C \/LB |V
W
L we X iIFF?qCF;E C/Z> o

o X\ (Zo\w

Question 3 [6 Marks]
Consider the following state table for an FSM with input w and output 2.

Curr Next State Output

O/\b\f“"(/ State w=0

5 A F
T
(¥
\WWV@

1]
=

I Mmoo
OO >»™mMm >m
UU""CD’J>J>J>IUJE
PR P OOORKR ON

Use state minimization to determine which states are equivalent to other states. List the sets of
states that are equivalent to each other. Show your work for full marks.

T = (pecd &6F G
@ P, = (ACLDE (v Fee> 1 JFf oukpud 2

— CcDoD
5 Lo > (3
ACOE wzol :_‘—'—77 EEA‘F/;?) EF il wal = U’*&F§$>

m AASHJLC)V@ Q%(ég\'\v\o @

¢ '*@‘X\ﬂ (& (HFRee) v i
‘ w0 = (AP B?@u e D (6 DD)}

oo S L 2=\ 2 (HEFE)
P, = (M) (LD LEH) o
BF -0 S o=
o =)

O Cé a/\faf/éttu\)@(e(ﬂ\' é’)‘H'SO\fQZC;LLQU(D

0"

N @mW\J

Question 4 [6 Marks]

Consider the following circuit having inverters and D-type flip-flops.

= o} o

D1 D2

c
\N\A’J\\/‘v&\\/\ DO D Q&-Do—rD Q-Ql—~Do—rDo_D QQZ
S e > o > m >

41& the delays in the circuit, and the setup and hold times, are as follows:
component delay

tinv 1.5ns
teQ 1ns
tsu 0.5ns

thold 1.2ns

a) [2 marks] What is the minimum clock period for the circuit? Show your work for full marks.

T = Tt = Teaw T
S HS Pl kO Sus

S > O .
b) [2 marks] Is there a hold-time violation? Show your work for full marks. RNV

© - \/iakc\ho\/\

’) 0.5 6.5
¢) [2 marks] Assume the clock arrival time at FFO can be delayed (i.e., it is possible to introduce
clock skew), by how much should it be delayed to minimize the clock period of the circuit? State
the new minimum clock period for the circuit. Show your work for full marks.

l°“3“\/ ok Qo> Do > dideer 6y Ui eley | wer (&
2 (gnqude Ratlh Q> VYo -
: Yiag = |Sus

. tFa ’b"\

- Aeiavk svvived eR - \{_OAS:—_L(,&/\;
T . = 24t %‘CQ £ %ﬂ’\

e LS LV\\l\/\

Ay B et v

‘ " I
l’@(ﬂé@(‘{\’(/kk” Ue ve Z /\‘_\ﬁ/_ \\/\/\&¢

6

Question 5 [9 Marks]

Consider the Verilog code for special type of counter, called a Johnson counter.

module johnson(clock, resetn, Q);
input clock, resetn;
output reg [2:0] Q;

always(@ (posedge clock, negedge resetn)

begin
if ('resetn)
Q <= 3'b0;
else
begin
Q2] <= "QI[0];
Q1] <= Q[2];
Q0] <= QIl11];
end
end
endmodule

a) [3 marks] Show the circuit schematic that corresponds to the functionality described in the
Verilog. Use any gates and flip-flops you may need.

o<

G D X
DG D &\ Qg

Gz
c[=K Y
vfecuku\
\)\/LM\L3
— <;\q/0LAJ»«b
0.¢ - reselin
Shegiov~—

Question 5 continued ...
b) [3 marks] Assume that resetn = 1, and that at the 0" clock cycle, Q2Q1Qo = 000, i.e. each
flip-flop stores a 0. Show the counter values over the next 6 clock cycles.

Q2 Q1 00
Clock cycle 1: L o o
Clock cycle 2: \ \ ®) }Z Uv\a/(r\f
Clock cycle 3: \ \ \ éy
Clock cycle 4: O (\
Clock cycle 5: S o (
Clock cycle 6: o o O

c) [3 marks] If the three assignment statements in the always block are changed from non-blocking
into blocking assignments as follows:

Qlz] = "Qf0];
Ql1] = Qflz2];
Q[0] = Qf[1];

Show the circuit schematic corresponding to the modified Verilog that uses blocking assignments.

P

'L CEs & \own
(w4 /K %Qu % F?S \/Lg'vé,sa‘*_/_\w\(¢ [C\vxc/o\
P N O
(H/\WJH«/ Cotre N

\ W~V Y/ i

Question 6 [12 Marks]

Write an ARM assembly language program that displays a 10-bit binary value on the red LEDs
on the DE1-SoC board. The value should initially be 512 (Ob1000000000). When K EY3 is pressed,
an interrupt should be generated and cause the displayed value to decrease by 1. When K EY) is
pressed, an interrupt should be generated should be generated and cause the displayed value to
increase by 1. If the displayed value is 0, pressing K E'Y3 should produce no effect; likewise, if the
displayed value is 1023 (0b1111111111), pressing K EYj should produce no effect. The memory-
mapped locations for the KEYS and LEDR are shown below. The IRQ ID for the KEYS is 73. The

mode-code for supervisor mode is (0b10011); the code for IRQ mode is (0b10010). Bits 4-0 of the
CPSR contain the mode; bit 7 is the IRQ mask bit.

Address 3t 30 “es 4 3 2 1 0

O0XFF200050 Unused | KEY3, Data register

Unused Unused Address

0xFF200058 Unused Mask bits Interruptmask register O0xFF200000 1 Unused 10 |

0xFF20005C Unused Edge bits Edgecapture register l l

LEDR, LEDR,

a) [4 marks] Write the code to enable interrupts for the KEYS, to set up SP for the relevant ARM
modes, to enable interrupts in the CPSR, and to display the initial value on LEDR. Use address
0x10000 as the SP for supervisor mode; use address 0x20000 as the SP for IRQ mode. The value
displayed on LEDR should be stored at a memory location labeled CURR_VALUE. Your code
should continually read a value from this location and display it on LEDR. Comment your code

Moy @), FE06I 0L 00l[/7 sve == disebrls e vpts

0 | Data register

02 @
5? ¢ cCose, ’L /[gL e
k i g o Sp . = OKleoo2 [(5% for SVC wo&
sl LoR) e s
—ox FFzoo0
Lok o op \oe) 7 cnelle for ens keyo
\ \4(/(’1(MD\/]?Jl k 'b 2.»0—*’6 \Mc_rfu\\/‘\‘s

(,JW\(L ST

(~ oV
S K| mee

%ob\(o\ oo\
C?é\z) Y 7o

¢ prov
0 M\ofov\m MR cosR, R\

tove
\7‘2 C’P\S s disatle, oS
o /1 \A& WAS)Q

(hev
Q wWoX<
HKL0COO (S¢ fac \2

<
R\, oo | 0o\ 1] enetda ks i S

Vi— 0O

wed @

o< FFeoo0000 1 odév A LEDE

ll:%‘\ll R()%’)) /*CU e umve (l23av v o _
)
h\!\\ko\p |-00¢ ~ @3“5 Vi (Oﬁé c,w/\fua,o;:\g
l 0 g C, 1 ([sore Yo Lep
\of STR f“> 2
2 LobP

VR _VMJE:

0.

, ¢ J\év\f\/fba("kgﬁg&é)
J\@Q LLEINSS ‘ (C?SECQK

word 06[0000096000 N adacl yoloe—

Wi g ke

Question 6 continued ...

b) [4 marks] Write the section of the SERVICE_IRQ subroutine to determine which device is inter-
rupting. Your code should call the KEY_ISR subroutine if KEYS are triggering the interrupt, and
behave appropriately otherwise. You will be asked to write the KEY_ISR subroutine in part (c).

SERVICE_TIRQ:
PUSH RO-R5, LR
LDR R4, =MPCORE_GIC CPUIF
LDR R5, [R4, #ICCIAR] // read the interrupt ID

/l WRITE YOUR CODE HERE

Cup 1S, 475 1 Sk 6 en A

RuE ERRoR
oL ket sg / muste Ne & ¥ey ‘
\; EXIT_~ \K(D\ // ek &é%ﬂf haund l/)0£

RQ ,BL o sebionting
2€

ER2oR.
B ERROZ / uillwers e R

EXIT_IRQ:
STR R5, [R4, #ICCEOIR]
POP RO-R5, LR
SUBS PC, LR, #4

10

Question 6 continued ...
¢) [4 marks] Write the KEY_ISR subroutine. Be sure you use the stack to store the previous contents

of any registers used in your subroutine.

Lopf .G pusk TRI-RG

“ Lye &5, :CUQ\SZ/vAgUE N pddess A Cu(:/)m.\%

Of)i ®s6 Lop RH, CRSN 7 C(M/fedt\roJ)ML o Y .

e DR R2,=0OxFC20006C / eo cagiuve o
0. Lop gD, CREL M st Coplume ot

S Rz, FOK B« dudd ¥eqz

0\'\‘1/\{\2:@") 1 BNE KeYo / 4 \Keqé‘/ W Qi&\diq;
cmp DJ—L/ATLLO 4 [,\uc,(é LQ?LAW/,DV w
A 0*5\ 5L Q &EnNogR beand~ €
o / SUR R%)RL{)%\'(V4 dec v eare Vodua
3Q&u()i O.ék sTp &4, CRE\ 7 shre
\“\QW R envpisk
k&Y(fD:z Al = Ok Vi // C(MC\\i {u“:f\/\’\\i%%
0.5 | MY Qufml /) eNe g dneck
QV\YJ/;L\V pbe@ EMVBR S
D Aoy R R &
wbéi 0.6 | <t B CK%} [/ S\ /e
sl DI -
pop ¢ - RS
J oC, LK

(e O , ¢ Mo

11

Question 7 [7 Marks]

Consider the following state diagram for a finite state machine with inputs « and w, and output z.
@® means exclusive-OR.

w @D X

Using the state codes below, derive the next-state logic functions and the output logic function.
Use Y7 and Yj as the signal names for the next-state logic; use z as the output signal name. Use
Karnaugh maps to minimize your logic functions, taking advantage of don’t-cares if possible.

Show your work; you can also use the next page. e xt
out
C,wfmrcld/ W, X m 1& ?W
W Yo \ L\ \6 ol °0 W\[,U/\ég
o 6 ©0 @\ @\ (<Y~} o) l
o \o o0 ©© o ° G\@ji/
Lo o\ Oo ‘ m}ﬁﬂ'

Question 7 continued ...

13

Question 8 [8 Marks]

You are to write an assembly-language subroutine that computes the n’* number in the Fibonacci
sequence. The n'" Fibonacci number is computed as:

Fib(n) = Fib(n — 1) + Fib(n — 2)

Note that Fib(0) = 0 and Fib(1) = 1. Your subroutine must be recursive. Equivalent C code for
such a subroutine is shown below.

int FIBONACCI (int N)
{
if (N < 2)
return N;
else
return FIBONACCI(N — 1) + FIBONACCI (N - 2);

}

You need to provide a main program that calls your FIBONACCI subroutine. The value of the ar-
gument N should be loaded from a memory location with label N, and passed to your subroutine.
You can assume that N > 1. A skeleton has been provided for you to fill in.

.data
N: .word 10

.text

.global _start
—Staitéﬁ sp :Ox 20000+ v hatize Stk .
)

Log ey, =2

Cor oo (4] L (s O frwn vt
ATV A¥ do

@) FlRemshetT *l

Y BZP(D
o j s oo

(SR 5 \731-'

FIBONACCI:

\"
eush 2 @o, L& £1 Q9D
™oy (&, €9 M YR SE re ¢ é/?o(PCZ
Lm0 g1, #2 * LU pop

DLT e vl edurn
3\)\7_) @n, Q_,b) &1
Bl Fldomshes!

o @1 €1 1
B O e d :
1 FBekCCT Fl Lo

A OO (L(, T

Question 9 [16 Marks]
Consider the following ARM assembly language program:

.text
.global _start
_start:
MOV RO, #OxFF
MOV R1, #-1
MOV R6, #0x8F000000
LDR R7, =LIST
LDR R8, [R7,#8]
ADD R7, R7, #4
LDR R9, =RESULT
LDR SP, =0x20000
BL FUNCL1
STR R6, [R7]
END: B END
FUNC1:
PUSH {R6,R7,R8,LR}
LSL R2, RO, #4
EOR R3, R2, R1
ASR R1l, R6, #3

BL FUNC2
POP {R6,R7,R8,PC}
FUNC2:

PUSH {R2,R3,R9,LR}
THIS: ADD R2, R2, R3
POP {R2,R3,R9,PC}
LIST: .word -2, -3, -4, -5, 3, 4
RESULT: .word O
.end

Fill in the table on the following page to indicate the contents of the stack when the instruction at
label "THIS” executes. The table may contain more rows than needed. The last row is partially
completed for you. Be sure to clearly specify the full hexadecimal value for each entry in the
“Data” column. Also, give the name of the register each value corresponds to when it was pushed
to the stack. Assume the first instruction of this program is stored at memory address 0x00000000.

15

x\ o & QU/ Q,Uls\sw

OO0 FFEo | OxpooodFFO 2T
0x QO\Fp o | OxFFFEFORE L3
Qx600(FFES | Oxo66660 S 29
OxDOOLFECL | Nveocsaoide Le
OxOBOIEFED | Ox\ Foososo Lis
Ox OWUEFEY(| Oxeocoo0 SH !
OrONIFFES | Oxppfe PPEC 28
Oxboo FFEC | D% 90000924 LE
0x00020000 - _

16

Question 10 [10 Marks] & eV, ks LO L/

Short answer:

(a) Why is the CPSR saved when an interrupt occurs?

o Lol 3&0\03% ? vweple QO
oot Ll W W& -Q\M%\I\SLX

(b) If the following instruction is executed: CMP R1, R2 with R1 = OxFFFF0000 and R2 =
0x00010000, what will be the values of the flags (C, V, N, Z) in the CPSR.

C=1,V=0,N=1,Z=0

(c) Why is BL used to branch to a subroutine instead B?

ot fo S oS Ghoy te reurA
s un bk “Usk&‘l\/

(d) Consider the following short program (the first instruction is at memory address 0x0):

_Start:
MOV R1, #0
ADD R1, R1, #1
MOV R15, #4

What does this program do?

precuies G d./\wQLMQ La;o\p Gr[‘
MOO E MoV

(e) Prior to learning ARM assembly, we introduced a simple processor in lecture. This processor
has 6-bit instructions and 4 registers. Give one reason this processor has fewer registers than
the ARM processor.

S BREONS Gt Roerower g olow

N i ka

This page has been left blank intentionally. You may use it for answers to any questions.

18

