
UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING

ECE253F – Digital and Computer Systems
Final Examination

December 12, 2019 2:00pm - 4:30pm
Duration: 150 minutes

Examiners: Profs. N. Enright Jerger and J. Anderson

Exam Type D: Examiner specified aids: One single sheet of letter size paper (8.5 x 11 inch), both
sides may be used.

Calculator Type 4: No calculators or other electronic devices are allowed.

All questions are to be answered on the examination paper. There is one extra page at the end and
you may use the back of a page. If you use more than the given space, please direct the marker to
the appropriate page and indicate clearly on that page which question(s) you are answering there.
It is your responsibility to make sure the marker can find your solution.

The number of marks for each question are indicated.

The examination has 18 pages, including this one.

Last Name: First Name:

Student Number: UTORID:

This page is only for marking purposes.

MARKS

1 2 3 4 5 6 7 8 9 10 Total

/6 /4 /6 /6 /9 /12 /7 /8 /16 /10 /84

2

Question 1 [6 Marks]

Fill in the following table with the appropriate number conversions:

8-bit 2’s complement decimal hexadecimal

11001110

-57

5B

3

- 50 CE

((000111 (7

0101 lool 89

I mark each

0101Mt 9281

Question 2 [4 Marks]

Consider the following ARM assembly language program:

.text

.global _start
_start:

LDR R1,=LIST
MOV R2,#0x0
MOV R4,R2

LOOP:
ADD R5, R1, R2
LDR R3,[R5]
ADD R4, R4, R3
CMP R3,#0
BEQ END
BLT END
ADD R2,R2,#0x4
B LOOP

END:
B END

LIST:
.word 5,8,9,-2,6,-1,0

.end

State the values stored in registers R2, R3 and R4 after the execution of the program (i.e. when the
program reaches the ”END: B END” instruction).

R2 =

R3 =

R4 =

4

mais
¢

CM "
2 xfffffffE C -2)

,o

l X 14 (20) . .

Question 3 [6 Marks]

Consider the following state table for an FSM with input w and output z.

!"## $%&'()'*'% +"',"'
)'*'% -./ -.0 1
2(3 4 /
4 5 6 0
! 2 2 /
7 3 2 /
5 2 2 /
3 ! 8 0
8 7 3 0
6 7 4 0

Use state minimization to determine which states are equivalent to other states. List the sets of
states that are equivalent to each other. Show your work for full marks.

5

mark
scheme
red

-

in
-

P
.

= (ABCD EF GH)

① Pi = (ACDE) (13 FGH) 11 diff output
z

ACDE w=o ⇒ (FAFA) BFGH w
- O ⇒ (ECDD

w=l⇒CBAAA# w - I ⇒ (HGFB)

> A , D are dish'n*① bead. "
Pz = CAXD) CCE) (BFGH) ¢
⇐ ¥ ' 'Et : III:3's)

B a (A)CD) (CE) f) CGH)

BF
"t : 9¥,

① GG are equivalent GH are equiv①

① Bf
are eauiv

Question 4 [6 Marks]

Consider the following circuit having inverters and D-type flip-flops.

!" !#
!$

%"
%# %$

&&" &&# &&$

Assume the delays in the circuit, and the setup and hold times, are as follows:
component delay

tinv 1.5ns
tcQ 1ns
tsu 0.5ns
thold 1.2ns

a) [2 marks] What is the minimum clock period for the circuit? Show your work for full marks.

b) [2 marks] Is there a hold-time violation? Show your work for full marks.

c) [2 marks] Assume the clock arrival time at FF0 can be delayed (i.e., it is possible to introduce
clock skew), by how much should it be delayed to minimize the clock period of the circuit? State
the new minimum clock period for the circuit. Show your work for full marks.

6

mark in
scheme

%

Tryin =3time + teat tsu
= 4. S t I t 0.5

= 6ns
0.5

es o
-s O

- S

e

.

- Tio lahar
fastest path

Qors Q , ⇒
teat tinv

= It is

-0
. s o

. s 2. Sus >told
0 .
S O

. S

12%5%7
,
!EthpanQ '

→DE) differ by line delay) l mark

a

.

.

delay arrival at
f fo by tiuv = 1.5ns

new
Thin - 2tint tea t fsu

=3 t I f- o - 5=4 . Sus)
All 3 paths

no -
"elledivots

" have 2 time I mark

Question 5 [9 Marks]

Consider the Verilog code for special type of counter, called a Johnson counter.

module johnson(clock, resetn, Q);
input clock, resetn;
output reg [2:0] Q;

always@(posedge clock, negedge resetn)
begin

if (!resetn)
Q <= 3’b0;

else
begin

Q[2] <= ˜Q[0];
Q[1] <= Q[2];
Q[0] <= Q[1];

end
end
endmodule

a) [3 marks] Show the circuit schematic that corresponds to the functionality described in the
Verilog. Use any gates and flip-flops you may need.

7

od#FEE
o

wracks
Teeth

O -S : reset
shown

O -S
'
.
clock Shown

(: 3 FF! feedback Path
, yw FFS

o .
S i inv

0 . Ss
shift connectivity

Question 5 continued . . .
b) [3 marks] Assume that resetn = 1, and that at the 0th clock cycle, Q2Q1Q0 = 000, i.e. each
flip-flop stores a 0. Show the counter values over the next 6 clock cycles.

Q2 Q1 Q0

Clock cycle 1:

Clock cycle 2:

Clock cycle 3:

Clock cycle 4:

Clock cycle 5:

Clock cycle 6:

c) [3 marks] If the three assignment statements in the always block are changed from non-blocking
into blocking assignments as follows:

Q[2] = ˜Q[0];
Q[1] = Q[2];
Q[0] = Q[1];

Show the circuit schematic corresponding to the modified Verilog that uses blocking assignments.

8

I O O

l l 0 I mark
' l l eady
O l l

O O (

O O O

FaaEI
" Eta

dock

I mark i 3 Ffs shown
.

(mark
.
all 3 Ffs

have same signal
on D input

I mark : inverter correct
.

Question 6 [12 Marks]

Write an ARM assembly language program that displays a 10-bit binary value on the red LEDs
on the DE1-SoC board. The value should initially be 512 (0b1000000000). When KEY3 is pressed,
an interrupt should be generated and cause the displayed value to decrease by 1. When KEY0 is
pressed, an interrupt should be generated should be generated and cause the displayed value to
increase by 1. If the displayed value is 0, pressing KEY3 should produce no effect; likewise, if the
displayed value is 1023 (0b1111111111), pressing KEY0 should produce no effect. The memory-
mapped locations for the KEYS and LEDR are shown below. The IRQ ID for the KEYS is 73. The
mode-code for supervisor mode is (0b10011); the code for IRQ mode is (0b10010). Bits 4-0 of the
CPSR contain the mode; bit 7 is the IRQ mask bit.

a) [4 marks] Write the code to enable interrupts for the KEYS, to set up SP for the relevant ARM
modes, to enable interrupts in the CPSR, and to display the initial value on LEDR. Use address
0x10000 as the SP for supervisor mode; use address 0x20000 as the SP for IRQ mode. The value
displayed on LEDR should be stored at a memory location labeled CURR VALUE. Your code
should continually read a value from this location and display it on LEDR. Comment your code.

9

Mov Rl , #061101001111
Svc mode , disable interrupts

0.5 Saff I risk CPS" "
" digit IF

@

sue mode

SVC LDR SP
,
= 0×10000

.

LDR Rt ,
= OX FF200058 A cut mask keys

1 In:Yu I SEE E3
.

' % 's."ve%:X:

Nov Rl ,# Ob
11010010 A

IRQ mode ,
disable interrupts

o.ssforltklnsjzg.pgzoxkdoooohiisp-rreuzan.ie
g.g

enable Mov Rl , fool 01001111
enable interrupts imnodsvec

interrupt / MSR CPSR , Rl ¢ add r I
LEDR

LDR R2 ,
= OX FF200000

LDR 123,
= CURR-VALUE Maddie al

Curr -value

/ continuous) troop;z µ ,
azz] a load

curvature

(OOP STR Rl , 4323
A store to

LEAR

B LOOP

CURR-VALUE :

O 'S /
.

word 061000000000
A initial value

OKAY if didnt properly set FIQ
bit

NOTE := apse highlighted
=

Question 6 continued . . .
b) [4 marks] Write the section of the SERVICE IRQ subroutine to determine which device is inter-
rupting. Your code should call the KEY ISR subroutine if KEYS are triggering the interrupt, and
behave appropriately otherwise. You will be asked to write the KEY ISR subroutine in part (c).

SERVICE_IRQ:
PUSH RO-R5, LR
LDR R4, =MPCORE_GIC CPUIF
LDR R5, [R4, #ICCIAR] // read the interrupt ID

// WRITE YOUR CODE HERE

EXIT_IRQ:
STR R5, [R4, #ICCEOIR]
POP RO-R5, LR
SUBS PC, LR, #4

10

I { CMR 125
, # 73

A check if key KQ

BNE ERROR

I BL KEY- ISR K must
be a key IRQ , BL

to subroutine

I B EXIT- IR Q K exit after handling 1129

ERROR :
l B ERROR A unknown

IRQ !

Question 6 continued . . .
c) [4 marks] Write the KEY ISR subroutine. Be sure you use the stack to store the previous contents
of any registers used in your subroutine.

11

push pop 0.5 PUSH ERI - 1253
LDR 125, =CURR-VALUE

Haddress of Curr -value

get Oss l
↳p 124 , CRS) T current

value to 124

%%w LDR R2, = XFC 20005C Hedge capture
adder

LDR 133, C R2] Hedge capture
value

auodfsuhioh / Cmp Rs , # 0×84 check key -3
Key

' BNE KEYok if 1. keys , must
be Kero

CMP 124 , # O k check if Curr-
value O

cwthedderllow 0.51 BE Q ENDISR A branch
if O

'

SUB 1241124 ,# I A decrease
value

subtract O.SI STR 124 , CRS] A store

y
,

store pg ENDISR

KETO :

LDK Rl
,
061111111111 N checky

curr -value

check 0.5 / CMP 124,121 A clamping chick
" ' " ' " "

overflow BEQ END ISR value
ADD 124,124 ,# I flincrease

addle 0.5 l STR 124 ,
CRS] llstore

stork ENDISR '

-

POP ERI - 1253
return O o S MOV PC , LR

Question 7 [7 Marks]

Consider the following state diagram for a finite state machine with inputs x and w, and output z.
� means exclusive-OR.

!"#"

!$#"

!%#$

&⊕ '

&⊕ '

&⊕ '

&⊕ '
&⊕ '

&⊕ '

Using the state codes below, derive the next-state logic functions and the output logic function.
Use Y1 and Y0 as the signal names for the next-state logic; use z as the output signal name. Use
Karnaugh maps to minimize your logic functions, taking advantage of don’t-cares if possible.
Show your work; you can also use the next page.

State y1y0
S0 00
S1 01
S2 10

12

current YI next output
g , yo YI lo o ' 00

Z

2. markso.io/:::i:ii:/- state
0 01 01 00 fable

%
y, >
of=

:

An
Y , -_ Ex yo t wxy. Yo -- Town 1- Tow 'T 2marks
2. marks
,

E- 'if Es . I mark tofu:X)

Question 7 continued . . .

Y1 =

Y0 =

z =

13

Question 8 [8 Marks]

You are to write an assembly-language subroutine that computes the nth number in the Fibonacci
sequence. The nth Fibonacci number is computed as:
Fib(n) = Fib(n� 1) + Fib(n� 2)
Note that Fib(0) = 0 and Fib(1) = 1. Your subroutine must be recursive. Equivalent C code for
such a subroutine is shown below.

int FIBONACCI(int N)
{

if (N < 2)
return N;

else
return FIBONACCI(N - 1) + FIBONACCI(N - 2);

}

You need to provide a main program that calls your FIBONACCI subroutine. The value of the ar-
gument N should be loaded from a memory location with label N, and passed to your subroutine.
You can assume that N > 1. A skeleton has been provided for you to fill in.

.data
N: .word 10

.text

.global _start
_start:

FIBONACCI:

14

DR SP 0 20000 1 I initialize stack

DR R4 N
LDR Ro CRY tl load N from men

Mov RI O

BI FIBONACCI 1 I use
BL

END BEND
11 return an Rl

PUSH Ro LR tl push
Mou R2 RO return POP po Pc

I
Cendetent

CMP R2 2 ti pop
BLT return 1 return
SOB Ro Ro I

B2 FIBONACCI ti recurshlin
ADD Rlc R2

Question 9 [16 Marks]

Consider the following ARM assembly language program:

.text

.global _start
_start:

MOV R0, #0xFF
MOV R1, #-1
MOV R6, #0x8F000000
LDR R7, =LIST
LDR R8, [R7,#8]
ADD R7, R7, #4
LDR R9, =RESULT
LDR SP, =0x20000
BL FUNC1
STR R6, [R7]

END: B END
FUNC1:

PUSH {R6,R7,R8,LR}
LSL R2, R0, #4
EOR R3, R2, R1
ASR R1, R6, #3
BL FUNC2
POP {R6,R7,R8,PC}

FUNC2:
PUSH {R2,R3,R9,LR}

THIS: ADD R2, R2, R3
POP {R2,R3,R9,PC}

LIST: .word -2, -3, -4, -5, 3, 4
RESULT: .word 0
.end

Fill in the table on the following page to indicate the contents of the stack when the instruction at
label ”THIS” executes. The table may contain more rows than needed. The last row is partially
completed for you. Be sure to clearly specify the full hexadecimal value for each entry in the
”Data” column. Also, give the name of the register each value corresponds to when it was pushed
to the stack. Assume the first instruction of this program is stored at memory address 0x00000000.

15

Memory Address Data (in hex) Register name

0x00020000

16

1 I mark for data
I Mauk for Register

hand

JXODIFFEO 0 00000FEO p z

Tx IFFEY OXFFFFFOOF R3

0 0001tFE8 0 00000068 Rg

0 0001 fFEC 0 00000040 LR
0 0001FFFO 0 81 000000 RG

0 0001EFFY 0 00000054 R7
0 0001 FFF8DXFFFFFFFC.RO
0 0001f FFC 3 00000024 LR

Question 10 [10 Marks]

Short answer:

(a) Why is the CPSR saved when an interrupt occurs?

(b) If the following instruction is executed: CMP R1, R2 with R1 = 0xFFFF0000 and R2 =
0x00010000, what will be the values of the flags (C, V, N, Z) in the CPSR.

(c) Why is BL used to branch to a subroutine instead B?

(d) Consider the following short program (the first instruction is at memory address 0x0):

_start:
MOV R1, #0
ADD R1, R1, #1
MOV R15, #4

What does this program do?

(e) Prior to learning ARM assembly, we introduced a simple processor in lecture. This processor
has 6-bit instructions and 4 registers. Give one reason this processor has fewer registers than
the ARM processor.

17

2 marks each

so that the flags 2 mode can be
restored when the ISR finishes

N I 0

2 I
C D

need to save instruction to return
to an link register

executes an infinite loop of
ADP more

instructions are narrower so don't

have enough bits In more registers

C = 1, V = 0, N = 1, Z = 0

This page has been left blank intentionally. You may use it for answers to any questions.

18

