


AnSroer

SP Ox0001FFEQ --> 0x00000004
Ox000000A8
Ox00000007
Ox00000078
Ox000000AA
Ox000000BB
0x000000CC
Ox0000002C
0x00020000 --> Unknown



,)(V\Suﬂ v

SP Ox0001FFEQ --> 0Ox00000004
Ox000000A8
Ox00000007
0x00000084
0x000000DD
Ox0000DAEE
Ox000000F F
0x0000002C
0x00020000 --> Unknown









TR



DEA

You are to write an ARM assembly language program that computes the length of the longest
sequence of even integers in an array. For example, in the array: 2,1,4,6,8,7, the longest sequence
of even integers is 3, owing to the sequence 4,6,8. Your program should put the result in register
RO. The array is at a memory address with label LIST; the number of array elements is at a
memory address with label N. You may assume all integers are positive and that N is greater than
orequal to 1. A suggestion: write out C or pseudo code for the algorithm first. Starter code is as
follows:

.data
LIST:

.word 2,1,4,6,8,7
N:

.word 6

. text
.global _start
_start:



0SB

You are to write an ARM assembly language program that computes the length of the longest
sequence of strictly ascending integers in an array. For example, in the array: 2,1,4,6,8,7, the
longest sequence of ascending integers is 4, owing to the sequence 1,4,6,8. Your program should
put the result in register RO. The array is at a memory address with label LIST; the number of array
elements is at a memory address with label N. You may assume that N is greater than or equal to
1. Asuggestion: write out C or pseudo code for the algorithm first. Starter code is as follows:

.data
LIST:
.word 2,1,4,6,8,7

.word 6
. text

.global _start
_start:



QbA

v Yo
\l = WU o © "\
" t4 o o\ \
a Kll'in
\ ur“
Y e T o7+
M——»



Q613

e
el \l \D
(V)

0 o
\

{7 D rwp frwa TRy

BT ~uto M FE T
%\ 9"’[\7 2}://\1‘&"’-D

{;\,\ MG et -
T



nexk E\L’uﬂl’ S\mg—\g*'%\mzo\
%;&LQ 46&34‘@5%



Qg A

Use Boolean algebra to prove the following:

ab + ac + bc = ab + ac + be

Show all your steps for full marks.

Q‘5> preve_

m ;—E:\(; ‘k/ﬁ.z ‘("ﬁbz,
O~
Lﬁ’s < DC M/D’S A—V“S

B (D (b = EDHE (5+<)
=& x5 <55 < By ( (5T
= Ejg*fw* achb t/df + be ‘Deac

e =

_ 2T 4 A x acdk + o rbac



O\%@ 0\%3 £= ab tac tbc_
Consider the majority logic function: f = ab+ ac+ be a’) t’F a' — b H\U\

a) Use Boolean algebra to prove that: if a = b, then f = a.

o | €= 40 4 nc & ab

b) Use Boolean algebra to prove that: if a = b’ then f = c. (Note that b' means (not b))

c) Use Boolean algebra to prove that: (a D b)c +ab= f b '
- o(lt+t ¢~

Show all your steps for full marks. — K

b (Q a\’“TD_
) - bo+ bed be

—_/bct be
_ (b =C

C) (@BbY( ~ab =F (g
- —
@[‘5 +R\DS¢ Lab =

(be « abL K ab =

£ \YZ

AGCTEDR blacxad =
—:_Og<c+b> < bCC*&) -

oc < b ~ ¢ %%:

o L~ b /HOC,



(244

Consider the following logic circuit. _—

o N2
f=ab +ac + bc
avC = o0, @\l)uw)\ok)l\\
a : c Coan  \NeAJUN OCLIA~

a) Because of the AND, OR and not gates shown, certain combinations of the logic signals a,b,c
can never occur. For example, since c is the inverted form of b, these two signals can never take
on the same value. List the combinations of a,b,c that can never occur.

b) Use a Karnaugh map to find the minimal sum-of-products form for function f (as given in the
box in the figure), where the combinations from part (a) are treated as don't-cares. The function f
should be represented in terms of a,b,c.



275
Consider the following logic circuit. Qq> ‘e; G —+ b — C_

1 XY e ke
(o) © ( A ‘UL
CO){\) o ( © =
f=a+b+c ( o Y ‘ o
LS ( O \
a b c 03 O\) l,\c_ — wa) OLl)\éO) (\O)\Lk
Can RS DA
By
&\000\ ¢ \D
Y
= (X

a) Because of the AND, EXOR and not gates shown, certain combinations of the logic signals a,b,c

can never occur. For example, since c is the inverted form of b, these two signals can never take
on the same value. List the combinations of a,b,c that can never occur.

b) Use a Karnaugh map to find the minimal sum-of-products form for function f (as given in the

box in the figure), where the combinations from part (a) are treated as don't-cares. The function f
should be represented in terms of a,b,c.



Question 10 10 pts

Consider an ARM processor in a car that connects to memory-mapped devices that
handle the airbag deployment in the event of a crash. For this question, you are to
write an ARM program that uses interrupts to deploy the airbag in the event of a
crash of sufficient intensity. The three relevant memory-mapped locations are shown
below.

Interrupts are enabled by writing a 1 into the | bit shown. The 8-bit crash intensity
threshold, Threshold, indicates the severity of crash required to cause an interrupt.
Crashes below this intensity will not cause an interrupt. For this question, the
threshold should be set to 128. When an interrupt occurs, the intensity of the crash
causing the interrupt will be placed in the Intensity field. The interrupt can be
cleared by a store (of any value) to the Intensity field. Finally, your interrupt service
routine should deploy the airbag by storing a 1 in the D field.

OXFFFEC800 unused 1| Threshold
31 8 7 0
OXFFFECH04|  unused intensiy
31 7 0
D
OXFFFEC900 unused
31 )

a) Complete the code below to enable interrupts for the airbag deployment program.
Set the stack pointer for SVC mode to 0x100000; set the stack pointer for IRQ mode
to 0x200000. You may assume that the exception vector table has already been
setup, and that a subroutine, CONFIG_GIC, exists to configure the GIC (generic
interrupt controller).

.global _start
_start:
// write your here code to setup the SPs

BL  CONFIG_GIC // configure the ARM generic interrupt controller

// write your code here to enable interrupts for the airbag deployment devic
e and for the ARM

b) Assuming that the interrupt ID for the airbag device is 101 (in decimal), complete
the code below for the IRQ_HANDLER subroutine. When the airbag interrupt is
detected, your code should call a subroutine called AIRBAG_ISR. Your code should
behave appropriately if an unknown interrupt occurs; specifically, your code should
ignore the interrupt and return.

.global IRQ_HANDLER
IRQ_HANDLER:
/* save R@-R3, because subroutines called from here might modify
these registers without saving/restoring them. Save R4, R5
because we modify them in this subroutine */
PUSH {RO-R5, LR}

/* Read the ICCIAR from the CPU interface */
LDR R4, =MPCORE_GIC_CPUIF
LDR R5, [R4, #ICCIAR] // read the interrupt ID

AIRBAG_CHECK:
// write your code here to call the AIRBAG_ISR as appropriate

EXIT_IRQ:
/% VWrite to the End of Interrupt Register (ICCEOIR) */
STR R5, [R4, #ICCEOIR]

POP  {RO-R5, LR}
SUBS PC, LR, #4 // return from interrupt

c) Write code for the AIRBAG_ISR subroutine to deploy the airbag.

AIRBAG_ISR:







