
UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

ECE253F – Digital and Computer Systems

Final Examination

December 15, 2021 2:00pm - 4:30pm

Duration: 150 minutes

Examiners: Profs. N. Enright Jerger and J. Anderson

Please enter your name and student number in the spaces provided above as it appears on Quer-
cus. It is important that your name exactly match the Quercus gradebook.

Exam Type D: Examiner specified aids: One single sheet of letter size paper (8.5 x 11 inch), both
sides may be used.

Calculator Type 4: No calculators or other electronic devices are allowed.

All questions are to be answered on the examination paper. Your answer MUST be fully contained
on the same page as the question. Any material written on the back of each page will be ignored..
Exams will be scanned – please write clearly in pen or dark pencil.

Please state any assumptions you make when answering a question.

The number of marks for each question are indicated. The exam has 19 pages, including this one.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Total

6 3 6 8 12 5 7 4 8 8 12 79

Question 1 [6 Marks]

Fill in the following table with the appropriate number conversions. If there is no possible answer,
explain why.

Decimal 8-bit 2’s complement 8-bit unsigned binary

103 1) 0110 0111 2) 0110 0111

3) -70 1011 1010 4) can’t represent negative

number

5) 212 6) Number is too large 1101 0100

You may use the space below for your calculations. Please indicate which part you are solving by
writing the corresponding number from the boxes above.

1 point for each answer

2

Question 2 [3 Marks]

Consider the following k-map:

ab
cd

00 01 11 10

00

01

11

10

1 1 10

0 1 00

1 0 X1

1 0 11

a) Using[2 marks] product terms, list all of the essential prime implicants.

abc, bd, bc, ac

0.5 for each

b) Derive[1 marks] the minimum cost SOP (sum-of-products) expression.

f = abc+ bd+ bc+ ac

deduct 0.25 for each mistake

3

Question 3 [6 Marks]

Consider the following sequence of ARM assembly code:

.data
XYZ: .word 0, 0xFFABCDFF, 1, PTR, 2
PTR: .word -2, -4

.text

.global _start
_start:

LDR R0, =XYZ
LDR R1, [R0, #4]
LDR R2, [R0, #12]
LDR R2, [R2]
AND R2, R2, #0xFF
CMP R2, #0
BGE ABC
LDR R3, =0x008945FF
EOR R4, R1, R3
LDR R5, [R0, #8]
LSL R5, R5, #5
B END

ABC: MOV R3, #0xF
STR R3, [R0]
LSL R3, #16
AND R4, R1, R3
ASR R5, R1, #4

END: B END

In the table on the next page, give the value in hexadecimal in each of the listed registers when
the processor reaches the instruction at label END. Your answer should include all 8 hexadecimal
digits stored in the register. If the value cannot be determined from the sequence of instructions,
write ”UNKNOWN”.

R1
0xFFAB CDFF

R4
0x000B 0000

R2
0x0000 00FE

R5
0xFFFA BCDF

R3
0x000F 0000

LR
UNKNOWN

1 pt for each answer

4

Question 4 [8 Marks]

Write an ARM assembly language subroutine that implements restoring division. This subroutine
takes 2 arguments: Divisor (R0) and Dividend (R1). It will return its results of Quotient in R0 and
Remainder in R1. You can assume the stack pointer has been initialized for you to be 0x20000.
You can assume the Divisor and Dividend are unsigned positive numbers. Comment your code
for full marks.

The restoring division algorithm is as follows:

1) Initialize the Remainder to 0.

2) Shift the Remainder to the left by 1 bit. Set the least significant bit of the Remainder to be
equal to the most significant bit of the Dividend. Shift the Dividend to the left by 1 bit.

3) Subtract the Divisor from the Remainder to get the new Remainder.

4) Test the new Remainder:

• If positive, shift a 1 in the least significant bit of the Quotient.
• If negative, shift a 0 in the least significant bit of the Quotient and add the Divisor back

to the Remainder to “restore” it back to its original value.

5) Repeat from step 2, until all bits in the Dividend are consumed.

DIVIDE: PUSH {R4,R5} // save r4, r5 before use
MOV R2, #0 //R2 is remainder
MOV R4, #0 // R4 is quotient

LOOP: CMP R5, #32 // All bits of dividend consumed?
BEQ RETURN
ADD R5, #1
LSL R2, #1
LSR R3, R1, #31 // MSb of dividend
ORR R2, R2, R3
LSL R1, #1
SUB R2, R2, R0
CMP R2, #0
LSL R4, #1 // shift quotient by 1
BGE ONE
ADD R2, R2, R0 // if negative, restore remainder
B LOOP

ONE: ORR R4, #1 // if remainder positive, put 1 in LSb
B LOOP

RETURN: MOV R1, R2 // move remainder into R1
MOV R0, R4 // move quotient into R2
POP {R4,R5} // restore r4, r5 before return
MOV PC, LR

5

Question 4 continued . . .
1 point for saving/restoring registers

1 point for returning values in correct registers

1 point for MOV PC, LR

1 point for consuming all bits of dividend

1 point for correct shifting of MSb of dividend into remainder

1 point for subtracting divisor from remainder

1 point for testing positive/negative of new remainder

1 point for correctly shifting 0 or 1 into quotient

6

Question 5 [12 Marks]

Consider a system that has the following hardware functionality:

• If the input Switch is set to 0, it blinks an LED on and off with a period of 0.5s. The off time
is 0.25s and the on time is 0.25s

• If the input Switch is set to 1, it blinks an LED on and off with a period of 1s. The off time is
0.5s and the on time is 0.5s

• On a reset, the LED should be off and restart the pattern according to the value of the switch.

a) Draw[4 marks] a schematic to implement the described functionality.

1 mark for mux/switch

1 mark for counter

1 mark for updating LED

1 mark for correct connections

7

b) Write[8 marks] a Verilog module to implement the functionality described above.

The top-level Verilog module is given below. Clock 10 is a 10MHz clock input. Resetn is
an active low asynchronous reset. You may write other modules as required. You may not
assume you have any other modules available to you.

module blinking_light(clock_10, resetn, switch, LED);
input clock_10, resetn, switch;
output LED;

wire [22:0] quarter, half, mux_out;
reg dff;
reg [22:0] counter;

assign quarter = 2500000;
assign half = 5000000;
mux2to1 u1 (quarter, half, switch, mux_out);

always@(posedge clock_10, negedge resetn)
begin

if (!resetn)
counter <= mux_out;
dff <= 0;

else
begin

if (counter == 0)
counter <= mux_out;
dff <= dff ˆ 1;

else
counter <= counter-1;

end
end

assign LED = dff;
endmodule

8

Question 5 continued . . .

module mux2to1 (x, y, sel, out);
input [22:0] x, y;
input sel;
output reg [22:0];

always@(*)
begin

if (sel)
out = y;

else
out = x;

end
endmodule

1 mark for mux

1 mark for correct sensitivity list

1 mark for correct reset

1 mark for correct counter update

1 mark for correct counter values

1 mark for correct LED assignment

1 mark for correct <= assignment in always block

1 mark for flip flop to hold LED value

9

Question 6 [5 Marks]

Given the following circuit and input waveforms for Clk, Data and Resetn, draw the correspond-
ing output waveforms. Each flip-flop has an active low, asynchronous reset.

1 mark for reset

2 marks for updates on posedge (Q1, Q2)

1 mark for updates on negedge (Q3)

1 mark for XOR

10

Question 7 [7 Marks]

a) The[6 marks] circuit below is a sequence-recognizer FSM that detects a specific sequence of 3 bits on
input w. Output z is set to 1 when the sequence is detected. For clarity, the clock and reset is
not shown in the figure.

Give the state-assigned table for the FSM:

b) What[1 mark] sequence is detected by the FSM?

11

0 0 0 I 00 0

0 I 1 1 00
°

10 1 00
0 I

11 I 0000
E.KYYYYY
010,0 lmark

Question 8 [4 Marks]

The logic equation for the carry-out function in a ripple-carry adder is: Cout = xy + xCin + yCin.
Use Boolean algebra to prove this is equivalent to Cout = xy + (x� y)Cin.

12

(out = xy + (✗ ④g) Cin

lm-art-xy-xy-cin-x-ycinkdisk.io
lmark = ✗ y

¥ xicin-iiiyc.in
iI mark = xy (in + xytintxici

-
+ 541in

tf
+ ✗gain -1

+ yciu (✗ +F)
<

lwa

= ✗ (in + xy
+ y
Cin

Question 9 [8 Marks]

You are to design a leading-one finder circuit. This circuit has many applications in digital logic
and computer arithmetic.

Input A3�0 is a 4-bit binary input. Output Z2�0 is a binary output that represents the position
of the (most-significant ’1’ in input A) + 1. For example, if A = 0010, then Z = 010, since A’s
most-significant ’1’ is in the 1st position, and 1 + 1 = 2 (010 in binary). If A = 0001, then Z = 001.
As another example, if A = 1001, then Z = 100, since A’s most-significant ’1’ is in the 3rd position.
If A = 0000, then Z = 000.

a) Give[4 marks] the truth table for the leading-one finder circuit.

A3 A2 A1 A0 Z2 Z1 Z0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

13

00 °o°:{
0 0 I

0 I 0

01 o
] / mark

0 1 1

01 I] / mark
01 1

01 1
I 0 0

I 0 0

10 0

100) / mark
to O

l 0 0

I 00

100

Question 9 continued . . .

b) Derive[4 marks] the minimized logic equations for Z2�0.

14

-22=1-3
I mark

2-1--1=3 (Az -1A ,)
I mark

2-o=AJ (Az + AT Ao)
= AJ Az +AJATAO

Inark
I mark

Question 10 [8 Marks]

You are to write an ARM assembly language program that converts a 3-bit binary code to 7-bit
thermometer code. The table illustrates the conversion:

3-bit binary 7-bit thermometer
000 0000000
001 0000001
010 0000011
011 0000111
100 0001111
...
111 1111111

The 3-bit binary code is input on SW2�0. The 7-bit thermometer code must be output to LEDR6�0.
Your program should use memory-mapped I/O to load/store from the switches and red LEDs.
Your program should use a loop to determine the thermometer code. No marks will be given for
solutions written in the style of “if-else if-else if-else if-...”

Finally, as the user adjusts the SW inputs, the program should update the thermometer code
output accordingly to reflect each new input. Meaning that, your program should use polling on
the SW inputs to detect any changes, and then update the thermometer code accordingly. On
the DE1-SoC system, LEDR are mapped at address: 0xFF200000; SW are mapped at address:
0xFF200040.

.text

.global _start
_start:

15

0.5 marks
0.5 mark

0.5 marks

lmark
lunark

30.5
linurk
Imark

.

0.5 marks
0.5 marks

0.5 marks

0.5 marks

Question 10 continued . . .

16

Question 11 [12 Marks]

You are to write an ARM assembly program that uses interrupts in an automotive application for
automatic rain-detecting windshield wipers. When rain is detected, an interrupt will be generated.
The heaviness of the detected rain will be represented by a 2-bit value. When the interrupt hap-
pens, your program should convert the rain strength to a 4-bit wiper speed by multiplying the rain
strength by 4. Your program should then write the computed wiper speed to a memory-mapped
address that controls the wipers.
The rain-detection and wiper hardware is accessed through the following memory address map.
Bit I must be set to ’1’ to enable interrupts. When an interrupt occurs, bits “rain” can be read
to detect the rain strength. Storing any value to these rain bits clears the interrupt. Bits “speed”
control the wiper speed, as discussed above.

The IRQ ID for the rain-detection hardware is 88. The mode-code for supervisor mode is (0b10011);
the code for IRQ mode is (0b10010). Bits 4-0 of the CPSR contain the mode; bit 7 is the IRQ mask
bit.

a) Write[3 marks] the code to enable interrupts for the rain-detection hardware, to set up SP for the
relevant ARM modes, and to enable interrupts in the CPSR. Use address 0x10000 as the SP
for supervisor mode; use address 0x20000 as the SP for IRQ mode. Comment your code for
full marks.

17

MOV Ro
,
Ob 10010 KIR Q mode] 0.5

MSR CPSR
,
RO

LDR SP
,
0×20000 ✗

SP for IRQ]
0-5

Mov Ro
,
0131001) 11 SUPERVISOR] 0.5

MSR CPSR
,
RO

LDR SP,
0×10000 LISP

for SVC]
0.5

LDR ROJOXFFFEC70011
base add] o , g

Mov RI ,
I

STR 121 , [Ro]
✗ enable inter.

in rain HW

Mou Ro
,
#D 00010011

MSR CPSR
,
RO ✗ enable

inter in ARM] 0>5

Question 11 continued . . .

b) Write[3 marks] the section of the SERVICE IRQ subroutine to determine which device is interrupting.
Your code should call the WIPER ISR subroutine if rain-detection hardware is triggering the
interrupt, and behave appropriately otherwise. You will be asked to write the WIPER ISR
subroutine in part (c). Comment your code for full marks.

SERVICE_IRQ:
PUSH RO-R5, LR
LDR R4, =MPCORE_GIC CPUIF
LDR R5, [R4, #ICCIAR] // read the interrupt ID
// WRITE YOUR CODE HERE

STR R5, [R4, #ICCEOIR]
POP RO-R5, LR
SUBS PC, LR, #4

18

I mark CMP 125
,
#88 A check ID if 88

' mark BNE ENDIRQ 11 if 188 exit

0.5 BL WIPER-15K 11 call subroutine

0.5 ENDIRQ :

Question 11 continued . . .

c) Write[6 marks] the WIPER ISR subroutine. Comment your code for full marks.

19

WIPER- ISR :

LDR RO
,
-_OXFFFEC 700 11 base addr / mark

LDR RI , [120,1-1-4] 4
load Rain bits lmark

STR RI , [120,11--4] ✗dear
interrupt lmark

LSR 131,11--2/1×4=4
Ima-K

STR RI ,
CRO, #8] ✗

store to speed
bits I

MOV PC, LR
✗ return

I mark

