University of Toronto |
Faculty of Applied Science and Engineering

Final Exam
December 2016

ECE253 - Digital and Computer Systems

Examiner — Prof. Stephen Brown

Print:

First Name Last Name

Student Number

1. There are 7 questions and 24 pages. Do all questions. The duration of the exam is 2.5 hours.

2. ALL WORK IS TO BE DONE ON THESE SHEETS. You can use the blank pages included at the
end of the exam (Pages 20 — 22) if you need more space. Be sure to indicate clearly if your work
continues elsewhere.

3. Closed book. One 2-sided aid sheet is permitted.

4. No calculators are permitted.

1[15]

2110]

3110]

4[12]

5[12]

6[11]

7115]

Total [85]

Page | of 24

[15 marks] . Short answers:

[2 marks] (a) Perform the following number-base conversions. Assume that all numbers are represented using
eight bits. If it is not possible to perform a conversion write NaN as the result.

i. (-25)1¢ to signed binary (2’s complement)

ADISWOT .« ottt e e e e e

ii. (240)10 to signed binary (2's complement)

ili. (-240);9 to signed binary (2’s complement)
ADSWET . .. i e e e

iv. (100)1¢ to signed binary (2’s complement)

AW RT . ..ottt ettt e e e
{2 mark] (b) Consider the circuit shown below. Give a sum-of-products implementation of f.
X
Dop—
FA
Answer
[2 marks] (c¢) Draw a circuit that can be used to multiply two one-bit numbers, p = a x b.

Page 2 of 24

[2 marks] (d) Verilog code is similar to C code. True or false? Briefly explain your answer.

Answer

[3 marks] (e) Consider the ARM code fragment shown below. When this code is being executed, an interrupt
occurs when the ARM processor is executing the instruction CMP R1, R3. Assume that inter-
rupts are enabled, and that the interrupt is generated by the timer that you used in Lab Exercise
10. Assume the following values for ARM registers: R1=1,R2=2,R3=3.

.text
.global _Start
_start: BL DOSUTHIN
LDR R10, =0xFF200040
1DR R6, [R10]
CMP R1, R3

Fill in the values that the registers listed below will have when the ARM processor reaches, but
has not yet executed, the branch instruction at the IRQ exception vector. Assume that the main
program is stored in the memory starting at address 0x20.

PC LR R1

[2 marks] (f) What is the purpose of the ARM processor’s exception vector table, and what is usually stored
there in a typical usage scenario?

Answer

Page 3 of 24

[2 marks] (g) Use Boolean algebra to minimize the following function. Show your work and specify which
identity is used in each of your steps.

Identity T1Z2Z3 + T1T2 + T1X223

Page 4 of 24

[10 marks] 2. Multiplexers :

(a) Consider the function ¢ = b+ a @ ¢. You are to implement this function using the circuit
structure shown below, by filling in 0 or 1 in each of the boxes that are selected by the 2-to-1
multiplexers.

11 1

(b) Implement the following logic functions using only 2-to-1 multiplexers.

i f=mzz9+ 2173

il. g=(z122) + x3

Page S of 24

iii. Using a D flip-flop, a 4-to-1 multiplexer, and any other needed gates, design a positive-
edge-triggered JK flip-flop. The JK flip-flop has two data inputs J and K, and behaves as
follows at the rising clock edge:

JK | Behaviour

00 | The flip-flop retains its state
01 | The flip-flop is reset to 0
10 | The flip-flopis set to 1

11 | The flip-flop output toggles

Page 6 of 24

[10 marks] 3. Finite State Machines:

Consider the finite state machine below, with input w and output 2.

(a) Using the state assignment
YsYsYaysy2y1 = 000001(A), 000010(B), 000100(C), 001000(D), 010000(F), 160000(F)

derive the expressions below:

Y =

Ys =

N
i

(b) For the next part, using the state assignment
ysyaysy2y1 = 000(A4), 001(B),010(C),011(D), 100(E), 101(F)

fill in the state-assigned table on the following page.

Page 7 of 24

State-assigned table:

Next state
Present

state w=0 w=1

Ysyath YaYaY, Y3YaY) z

Output

000
001
010
011
100
101

Hm O O0w >

In the space below use K-maps to derive minimal sum-of-products expressions for Y3 and z.

Answer

Page 8 of 24

[12 marks] 4. Verilog code:

Consider the circuit shown below.

SW, SW, SW,

KEY, _ w
Shift register 0
— D QfF— LEDR,
1

Resemn
Parity p

CLOCK_50

N

Resetn c]
Counter
1 | o

Verilog modules for the shift register and parity subcircuits are shown below.

module shift (input Ln, Clock, input [7:0] R, output y);
reg [7:0] Q;
always @ (posedge Clock)
if (Ln == 0)
Q <= R;
else
begin
Q[7)] <= 1'b0;
Q[6:0] <= Q[7:1};
end
assign y = Q[0];
endmodule

module parity (input w, Clock, Resetn, output p);

reg Q;
always @ (posedge Clock)
if (Resetn == 0)
Q <= 1’'b0;
else
Q <=0Q " w;
assign p = Q;
endmodule

On the following page you are to write Verilog modules for the counter, and for the top-level circuit.

Page 9 of 24

Provide a Verilog module for the counter in the space below. It is just an up-counter.

Answer

Provide Verilog code for the top-level module. Include the shift register, parity, and counter modules
as subcircuits, and write Verilog code for the rest of the circuit elements. Additional space is provided
on the next page.

Answer

Page 10 of 24

... Additional Space for the Verilog Top-level Module

Page 11 of 24

{12 marks] 5. Trace an ARM Program:

Consider the ARM code shown below. Note that the address that each instruction would have in the
memory is shown to the left of the code.

text
.global _start
_start:

00000000 LDR SP, =0x20000
00000004 LDR R4, =X
00000008 LDR RO, [R4], #4
0000000C LDR R1, [R4], #4
00000010 BL BINGO
00000014 STR RO, [R4]
00000018 END: B END /* wait here */

0000001C BINGO: PUSH {R3,LR}

00000020 MOV R3, RO
00000024 CMP R1,RO
00000028 BLT BONGO

0000002C BANGO: SUB R1,RI1,R3

00000030 BL BINGO
00000034 MOV R1, RO
00000038 BONGO: MOV RO, R1
0000003C POP {R3,PC}

X: word 2

Y: word 5

M: Sspace 4

.end

(a) What does this code “produce™? That is, what is the relationship between X,Y and M?

Answer

Page 12 of 24

(b) If this program is executed on the ARM processor, what would be the values of the ARM reg-
isters shown below the first time the code reaches, but has not yet executed, the instruction at
address 0x34. Also, show in the space below the contents of the stack in memory at this point
in time (fill in the memory addresses on the left, and show the data stored in each location). For
memory values that are not known, if any, write N/A in the corresponding box.

RO R1 R3
R13 R14 R15
Memory Address Content
1FFFC
20000

Page 13 of 24

{11 marks] 6. Assembly Language Subroutines:

Consider the ARM program shown below. This program executes in an endless loop that calls two
subroutines: PARSE and READ_KEY.

You are to write the PARSE and READ _KEY subroutines. The PARSE subroutine is supposed to
examine the machine code passed to it in register R0 and identify which instruction the machine code
represents. As shown in the code, the possible instructions that PARSE may be passed are AND,
ORR, EOR, and B. PARSE has to indicate which instruction it identifies by writing to the HEX2-0
displays on a DE1-SoC board. The PARSE subroutine is discussed further on the following page.

The READ_KEY subroutine reads from the pushbutton KEYs port on the DE1-SoC board, and waits
for any KEY to be pressed. After a KEY is pressed, the subroutine returns to the main program. The
purpose of READ_KEY is to wait for the user to press a KEY, and then to return.

.global _start
_start: LDR SP, =0x3FFFFFFC
TOP: LDR R5, =INST_LABEL

LDR RO, [R5], #4

BL PARSE

BL READ KEY

LDR RO, [R5], #4

BL PARSE

BL READ KEY

LDR RO, [R5]. #4

BL PARSE

BL READ KEY

LDR RO, [R5], #4

BL PARSE

BL READ KEY

B TOP

/* Code below this line is not executed */

INST.LABEL: AND RO, R1,R2
ORR R1, R2,R3
EOR R2,R3,R4
B INST_LABEL
/* Code above this line is not executed */
.end

(a) In the space on the following page, write the code for the READ_KEY subroutine. The registers
in the pushbutton KEY port are shown at the end of this exam.

Page 14 of 24

Answer Space for READ KEY

(b) The PARSE subroutine that is called by the main program should display the following on
HEX2-0: And for AND, Orr for ORR, Eor for EOR, and —-- for B. The displays should
appear as shown below.

And Or- Eor ---

The registers in the HEX display are shown at the end of this exam. Since the main program
runs in an endless loop it should produce the following sequence of outputs on HEX2-0:

And
Orr
Eor

And

You will need to know the format of the logic instruction machine code, which is:

31 28 27 26 25 24 21 20 18 16 15 12 11 0

Cond 00 1] OpCode |S Rn Rd Operand 2

For purposes of this question your code needs to examine only bits 21—24, which are called the
Opcode. This field specifies the type of instruction: it has the values 0000 for AND, 0001 for
EOR and 1100 for ORR.

Write the code for the PARSE subroutine in the space on the following page.

Page 15 of 24

Answer Space for PARSE

Page 16 of 24

[15 marks] 7. Exceptions :

Consider the code shown below, which sets up an exception vector table for interrupts. The main
program has to first set up the stack pointers and enable interrupts for the pushbutton KEYs. To
configure the GIC, assume that you are given a subroutine named CONFIG_GIC. The CPSR register
and ARM mode bits are shown at the end of the exam. You are to fill in the missing code below.

.section .vectors, ~ax”

B

.word
.word
.word
.word
.word
B

.word

.text

.global

_start:

MAIN.LOOP: AND
EOR
ORR

_start

SO O OO

SERVICE_IRQ
0

_start

R0, R1,R2
R3, R4, RS
R6,R7,R8
MAIN_LOOP

Page 17 of 24

/! reset vector

// undefined instruction vector
// software interrrupt vector

/1 aborted prefetch vector

// aborted data vector

// unused vector

// IRQ interrupt vector

/1 FIQ interrupt vector

// main program simply repeats the loop

After setting up the stacks and enabling interrupts the main program enter an endless loop. The pur-
pose of the program is as follows: when a user presses a pushbutton KEY, the corresponding interrupt
service routine should display on HEX2-0 which instuction in the endless loop will be executed next
when the interrupt service routine returns to the main program.

Complete the SERVICE_IRQ code below. It has to check if the KEY's port caused the interrupt. If so,
it should call a subroutine named KEYS_ISR to handle the interrupt. The KEYs port uses interrupt
ID number 73. The SERVICE_IRQ code has to pass to KEYS_ISR the machine code, in register RO,
of the next instruction that will be executed in the main program on return from the interrupt.

You are to fill in the missing code below.

.global SERVICE_SVC
SERVICE_IRQ: PUSH {RO-R7, LR}
/* Read the interrupt ID from the ICCIAR in the GIC */

DR R4, =0xFFFEC100
LDR RS, [R4, #0xC] // read interrupt ID
CHECK_KEYS:
BL KEY_ISR // pass RO as a parameter to KEY_ISR
EXIT.IRQ: /* Write to the End of Interrupt Register (ICCEOIR) in the GIC */
STR RS, [R4, #0x10} // write to ICCEOIR
SUBS PC, LR, #4

Write the KEYS_ISR subroutine on the following page. To control HEX2-0 you can simply call
the PARSE subroutine that you wrote in Question 6. An example of output that could be produced if
the main program were executed and the user pressed a few KEYs might be:

Orr
And
Eor

Orr

Page 18 of 24

.glebal KEYS_ISR
KEYS_ISR:

Page 19 of 24

Extra answer space for any question on the test, if needed:

Page 20 of 24

Extra answer space for any question on the test, if needed:

Page 21 of 24

Extra answer space for any question on the test, if needed:

Page 22 of 24

Boolean Identities

10a. z-y=y-z Commutative

10, z+y=y+=x

lla. z-(y-2)=(z-y)-z Associative

11b. z4+(y+2)=(zx+y)+=

12a. z-(y+z2)=z-y+z-2 Distributive

13a. z4+zxz-y==x Absorption

14a. z-y+z-y==z Combining

15. T-y=7T+7% DeMorgan’s theorem

16a. z+T-y=r+y

17a. z-y+y-2+T-2=x-y+T-2 Consensus

Address
OXFF200050

31 30 N 4 3 2 i 0
Data register

Unused

OxFF200058 Mask bits Interruptmask register

OXFF20005C Edge bits Edgecapture register

Address

OxFF200020

3130 24 2322 16 1514 8 7 6 ¢ | Dataregister
' T

IR R

HEX3¢, HEX2,, HEXls, HEX0s,

Segments

31 3029 28 7 6 5 4 0
CPSR [N|Z]|C F(T Mode
User Mode: 10000
FIQ Mode: 10001
IRQ Mode: 10010
Supervisor Mode: 10011
Abort Mode: 10111

Undefined Mode: 11011

Page 23 of 24

THIS PAGE INTENTIONALLY LEFT BLANK

Page 24 of 24

