
UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING
Final Exam, Dec 21, 2018

DURATION: 2 hour 30 mm
Second Year - Engineering Science
ECE253 - Computer Organization

Calculator Type: 4
Exam Type: D

Examiners - T. Czajkowski and T. Kosteski
Instructions:

Write your name and student number.
Do not remove any pages from this examination booklet.
Answer all questions and justify all your work for full marks.
The grade for each question is given in the square brackets [1.
Aid Sheets are provided at the end of this booklet. DO NOT REMOVE.

Last Name:

First Name:

Student #:

Question Grade

QI

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Total

(83)

Page 1 of 19

Question 1 [4 marks]: Simply the following expression:

A+ AB+ BC+ CD+ DE+EF

Page 2 of 19

Question 2 [10 marks]: Design a minimum size combinational logic circuit that converts input
data into a Binary Coded Decimal (BCD) representation. The table below lists the decimal
number from 0 to 9, each corresponding BCD, and the corresponding input data representation.

Decimal
Value

BOO (1312f1f0)
Representation

Input Data (X3X2X1X0)
Representation

0 0000 0000
1 0001 0011
2 0010 0101
3 0011 0110
4 0100 1010
5 0101 1011
6 0110 1100
7 0111 0111
8 1000 1000
9 1001 1001

Additional space on the next page

Page 3 of 19

Additional space for Question 2

Page 4 of 19

Question 3 [5 marks]: Given the expression,E, below, design a circuit using only NAND gates

that implements, E (i.e. the inverted form of E). The only inputs are w, x, y and z.

E= (je

Page 5 of 19

Question 4 [10 marks]: For the truth table below, design a minimum-size combinational logic
circuit using only NOR gates. The inputs are A, B, C, D and the output is Y.

A { B] c D Y
o 0 0 0 0
o 0 0 1 0
o 0 1 0 1
o 0 1 1 1
o 1 0 0 1
o i 0 1 1
o 1 1 0 0
o 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

Additional space on the next page

Page 6 of 19

Additional space for Question 4.

Page 7 of 19

Question 5 [16 marks]: Design a finite state machine (FSM) with two inputs (x and y) with an
output z, which is asserted every time x and y change state to opposing values at the same time.
A sample output looks as follows:

x000111010100

y0 11 011 011 01 0

Z000010000110

a) [4 marks] Show a state table for this FSM.

b) [4 marks] Show a state-assigned table for this FSM, using as few bits possible.

(Continued on next page)

Page 8 of 19

c) [8 marks] Derive minimum cost Sum-of-Products logic expressions for next state
and output signals.

Page 9 of 19

Question 6 [3 marks]: The synchronous circuit below starts with qo,ql,q2 = 0,0,0. After four
clock pulses, determine the new values for qo, qi, and q2. The flip-flops have both Q and Q
outputs.

-

clk

Page 10 of 19

Question 7 [20 marks]: We want to implement a simple calculator using ARM assembly. The
calculator only performs addition and subtraction, but what makes it more interesting is that it
permits the use of parentheses that must be handled correctly.

The input the calculator needs to process starts at label INPUT and consists of a series of 32-bit
data elements. Each data element comprises a 3-bit code as its most significant bits, and the
remainder is an unsigned binary number. The 3-bit codes mean:

000 - left parenthesis

001 - right parenthesis

010— add symbol

011 -subtract symbol

100 - value to be operated on.

111 —end of input

You are to write the program that implements the calculator. It must contain a recursive
subroutine called PROCESS, which takes as input the position in the input it should start
processing data. The position should point to the element right after a left parenthesis and this
method should provide a correct result between this parenthesis and a corresponding right
parenthesis. The result is to be returned in RI and the position of the corresponding right
parenthesis will be returned in RO. You may assume the input is properly formatted and checking
input validity is not needed.

Additional Space on the next page

Page 11 of 19

Additional Space for Question 7

Page 12 of 19

Question 8 [15 marks]: Suppose that you have a computer system, very similar to the one used
in the labs for this course. In this system, there is a new component connected with an ID of 80
(in decimal) to the GIC. This component is a message receiver with the following registers:

Address Meaning
OxFF2ECCOO Data
0xFF2ECC04 Count
0xFF2ECC08 Threshold
0xFF2ECC0C Status

The data register holds the information for a given message, if and only if count> 0. Count
specifies the number of stored messages. Threshold defines how many messages must be
stored to trigger an interrupt, and status only has one bit (bit 0) which is set to 1 when this
component has triggered an interrupt.

To clear this interrupt you must reduce the count below the threshold, which can only be done by
reading the data register. The reading of the data register will reduce the count by 1 (though it is
possible another message arrives as you read the current message). Once you have read
enough messages to reduce count below threshold, this will then trigger the status register to
lower bit 0 and the interrupt will be cleared.

You are to write an Interrupt Service routine called MY_ISR to handle the interrupts generated by
this component. You can assume that the exception vector table has been appropriately set and
the only task at hand is that of writing MY_ISR. You will, however, need to handle the GIC as
well as you did in lab 10. For the reference, the relevant registers of the GIC are:

Address Register Name
0xFFFEC100 1001CR
OxFFFEC104 ICCPMR
OxFFFEC10C ICCIAR
0xFFFEC110 ICCEOIR

Additional Space on the next page

Page 13 of 19

Additional Space for Question 8

Page 14 of 19

AID SHEET

No Epon No Epon Deron

la 0= 1 lb 1=0
2a x+0=x 211 i.1x
3a x+1=I 311 x.0=0
4a x+x=x 411 XX=X I4JeflNier*IM

5a x+x=I 5b xx=0

6 (x)=x kivoiiionlaw
Ia x+y=x y+x lb xy=yx law
Ba x+xy=x 811 x(x+y)=x AbsoqMion law

9a x -fXy=X+y 911 x(x+y)=xy

IDa (x+y)=x y 1011 (xy)x+y DeMOI1y%(SI
ha (x + y) + z = x + (y + z) 1111 (xy)z=xyz)

=x+y+z =xyz AsiveIaw
12a x+yz=(x+y)(x+z) 1211 x(y+z)=xy+xz Dtsrti1ivekiw

Tablel Boolean Algebra Theorems

Page 15 of 19

11
 Veri1og Quick Reference Card

1. Module
module module_name (list of ports);

U if (reset = 0) begin input /output! mont declarations
data =

net / reg declarations
end

integer declarations U case (operator)
parameter declarations TdU : z = :

2dl:z=x—y
gate / switch instatuces 21 d2 : z =x *

hierarchical default: Sdisplav ("Invalid Operation');
parallel statements end case

encimodule • initial begin 50MHz clock
clock = 0:
forever #10 clock = --clock;

end f precission I as
• repeat (2) f posedge elk) data:
• bus <= repeat (5) t (p05ed2e elk) data

Parallel Statements f evaluate data when the assignment is
Following statements start executing simultaneously inside encountered and assign to bus after S
module clocks-
initial begin U repeat (flag) begin !'." looping

{ sequential statements} action..

end
• while (i :i0)begin

always begin action -

(sequential statementsi •
end
for (i = 0: 1< 9: i = i + 1) begin

end
.-.. actioa....

assign wire—name = [expression]): end
• wait (!oe) P5 data = din:

Basic Data Types • = (negedge clock) q d;

a. Nets
• been finishes at time #2

e.g. wile, wand, fri. wor
l0x=v;
15 a =b:

U Continuously driven end
I Gets new value when driver changes
I LHS of continuous assignment •

-

fri [1::0] data:
The @(*) token adds to the sensitivity list all

unconditional nets and variables that are read by the

assign data[15:0] = data-111 statements in the always block.

1/ conditional
assign data{15:01 = enable ? data_in: 16ha;

b Registers
e.g reg

I Represents storage
I Always stores last assigned value
I LHS of an assignment in procedural block.

reg signal;
(posedge clock) signal = 1 bl:

/1 positive edge
@(eset) signal = I b0; 1/ event (both edges)

Page 16 of 19

7. Declarations
concatenation
arithmetic
modulus

> >= relational
logical negation

&& logical and
logical or
logical equality
logical inequality
case equality
case inequality
bit-wise negation

& bit-wise and
bit-wise inclusive or

A bit-wise exc1uive or
bit-wise equivalence

& reduction and
reduction nand

I reduction or
H reduction, nor
A reduction xor

reduction xnor
left shift
right shiñ

71: condition
or event Of

Page 17 of 19

Folnemonic

ADO

ADD

E

E!C

GL

EX

CDP

'OWN

OMP

EOR

no

LDM

LDR

MC R

MLA

MOV

MRC

MRS

MSR

MU L

P1VN

RSB

RSC

Instruction

Ao wh arry

Ado

AND

Err:h

El ;--'ear

Erarh Link

Erarh ard Exharig

Coprocor Data Proceassirg

'Compare Negative

Co rnpa r

ExcJL,sive OR

Load rcesor from
merrry

Load muttiple reg isters

Lad regisler from rr)orf

Move CPU rr t
:oprosor rgi1er

Mup1 A-c--.!-ilj~ate

Move regisler ;r o:r7,1

Move frori :oprocscr
register t' CPU

Move P3R slatLsfflags, to

Move regisler lo PER
sta1jfia

Mu It ipy

Mote negative register

OR

Reverse EL biract

Reverse SLb1raotith Carry

Action

Rd R n + 0 p i-Carry

Rd Rn + 0p2

Rd:=RnAO 0p2

R15

Rd R A.D NOT 02

R14 R1, R 15address

R15 Rn,
T bit, Rn[O]

Copro:sor-ific)

CPSR flags Rn + Op2

OPER flags Rn - 0p2

Rd Rn AND NOT 02;
OR :op2 AND NOT Rn:,

Coprocessor load

St3:k marputa1ion 1Pop

Rd

cPn rRri 'opcRm

Rd = :RrD R + Rn

Rd: 0 p 21

Rn s Pn <opcRrn}

Rd:RrnR

Rd = xFFFFFFFF r"-"--/R 0p2

Rd Rn OR O2

Rd =::2-Rn

Rd. = Op2 Rn 1 + Carry

Page 18 of 19

Mnernonic

SEC

T

Instruction

Sizblracl with Carry

Store copresor reiser10
meroy

Store MutipIe

Store rice to nmon

Subiract

Boftiare Intrrup1

Sap rsr wih mernor

1e4 btwe eqsa1i1y

Tesi bs

Action

Rd RnOp2 1+ Carry

address := CRn

Stack maripiMiicn {P5h)

= Rd

Rd = RnOp2

GS,call

[Ri], [Rn} Rrn

CPR flags Rn EOR 0p2

CF'SR flags Rn AND 0p2

Page 19 of 19

