UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING
Final Exam, Dec 21, 2018
DURATION: 2 hour 30 min
Second Year — Engineering Science
ECE253 — Computer Organization

Calculator Type: 4
Exam Type: D

Examiners — T. Czajkowski and T. Kosteski
Instructions:

1. Write your name and student number.
2. Do not remove any pages from this examination booklet.
3. Answer all questions and justify all your work for full marks.
4. The grade for each question is given in the square brackets [].
5. Aid Sheets are provided at the end of this booklet. DO NOT REMOVE.
Question Grade
QI
Q2
Q3
Last Name:
Q4
First Name: Q5
6
Student #: Q
Q7
Q8
Total
(83)

Page 1 of 19

Question 1 [4 marks]: Simply the following expression:

A+ AB+ BC+ CD + DE + EF

Page 2 of 19

Question 2 [10 marks]: Design a minimum size combinational logic circuit that converts input
data into a Binary Coded Decimal (BCD) representation. The table below lists the decimal
number from 0 to 9, each corresponding BCD, and the corresponding input data representation.

Decimal BCD (fsf2f1fo) Input Data (X3X2X1Xo)
Value Representation Representation
0 0000 0000
1 0001 0011
2 0010 0101
3 0011 0110
4 0100 1010
5 0101 1011
6 0110 1100
7 0111 0111
8 1000 1000
9 1001 1001

Additional space on the next page

Page 3 0of 19

Additional space for Question 2

Page 4 of 19

Question 3 [5 marks]: Given the expression,E, below, design a circuit using only NAND gates
that implements, E (i.e. the inverted form of E). The only inputs are w, x, y and z.

E= X+y)(Ww+x)(x2)

Page 5 of 19

Question 4 [10 marks]: For the truth table below, design a minimum-size combinational logic
circuit using only NOR gates. The inputs are A, B, C, D and the output is Y.

>
ve}
@)
<

2 lalalalalalalalo|lololololololo
Alalalalolo|lo|o|=a|a|lalalolololo
_\Aoo__\oo__\oo__\ooo
= O = O O=O=|O|=|O|=|0O|=|O
= O |O|= OO0 |||~ |O|O0

Additional space on the next page

Page 6 of 19

Additional space for Question 4.

Page 7 of 19

Question 5 [16 marks]: Design a finite state machine (FSM) with two inputs (x and y) with an
output z, which is asserted every time x and y change state to opposing values at the same time.
A sample output looks as follows:

x000111010100
y011011011010
z000010000110

a) [4 marks] Show a state table for this FSM.

b) [4 marks] Show a state-assigned table for this FSM, using as few bits possible.

(Continued on next page)
Page 8 of 19

c) [8 marks] Derive minimum cost Sum-of-Products logic expressions for next state
and output signals.

Page 9 of 19

Question 6 [3 marks]: The synchronous circuit below starts with qo,q1,92 = 0,0,0. After four
clock pulses, determine the new values for qo, g1, and 2. The flip-flops have both Q and Q

outputs.

ol

9,

ol

Page 10 of 19

Question 7 [20 marks]: We want to implement a simple calculator using ARM assembly. The
calculator only performs addition and subtraction, but what makes it more interesting is that it
permits the use of parentheses that must be handled correctly.

The input the calculator needs to process starts at label INPUT and consists of a series of 32-bit
data elements. Each data element comprises a 3-bit code as its most significant bits, and the
remainder is an unsigned binary number. The 3-bit codes mean:

000 - left parenthesis

001 — right parenthesis

010 — add symbol

011 — subtract symbol

100 — value to be operated on.
111 — end of input

You are to write the program that implements the calculator. It must contain a recursive
subroutine called PROCESS, which takes as input the position in the input it should start
processing data. The position should point to the element right after a left parenthesis and this
method should provide a correct result between this parenthesis and a corresponding right
parenthesis. The result is to be returned in R1 and the position of the corresponding right
parenthesis will be returned in RO. You may assume the input is properly formatted and checking
input validity is not needed.

Additional Space on the next page

Page 11 of 19

Additional Space for Question 7

Page 12 of 19

Question 8 [15 marks]: Suppose that you have a computer system, very similar to the one used
in the labs for this course. In this system, there is a new component connected with an ID of 80
(in decimal) to the GIC. This component is a message receiver with the following registers:

Address Meaning
OxFF2ECCO00 Data
OxFF2ECCO04 Count
OxFF2ECCO08 Threshold
OxFF2ECCOC Status

The data register holds the information for a given message, if and only if count > 0. Count
specifies the number of stored messages. Threshold defines how many messages must be
stored to trigger an interrupt, and status only has one bit (bit 0) which is set to 1 when this
component has triggered an interrupt.

To clear this interrupt you must reduce the count below the threshold, which can only be done by
reading the data register. The reading of the data register will reduce the count by 1 (though it is
possible another message arrives as you read the current message). Once you have read
enough messages to reduce count below threshold, this will then trigger the status register to
lower bit 0 and the interrupt will be cleared.

You are to write an Interrupt Service routine called MY_ISR to handle the interrupts generated by
this component. You can assume that the exception vector table has been appropriately set and
the only task at hand is that of writing MY_ISR. You will, however, need to handle the GIC as
well as you did in lab 10. For the reference, the relevant registers of the GIC are:

Address Register Name
OxFFFEC100 ICCICR
OxFFFEC104 ICCPMR
OxFFFEC10C ICCIAR
OxFFFEC110 ICCEOIR

Additional Space on the next page

Page 13 of 19

Additional Space for Question 8

Page 14 of 19

AID SHEET

Mo. | Equation Mo. | Equation Description
fa| D= | 1=0
Za| x+D=x | xe1=x
dJa|x+1=1 db| xa0=0D
42| X+x=x 4h| xx=x idempotent law
Sa| x+x=1 S| xx=D
6 (T:]=x involution law
7a| x+y=x Y+ X | X¥=¥XK Commusative law
Ba|x+xy=x 8b| x{x+y)=x Absorption law
04| XK+XYy=XK+Y¥ oh| X(x+y)=x¥y
10a| @xty)=xy 10b| xy)=x+y Deborgan’s kaw
MMa| x+y)+z2=x+{y+3) 11b| xyY)z=x(y)

=K+y+2 =X¥yZ Associalive law
12a | x+yz=(x+Y)(x+2) 12b | x(y+2Z)=xy+xz | Distrindive law

Tablel

. Boolean Algebra Theorems

Page 15 of 19

Verilog@ Qaiék Reference Card

; Module

2.

module module name (list of ports);
mput / output / inout declarations
net / reg declarations
mteger declarations
parameter declarations

gate / switch instatnces

hierarchical instances

parallel statements
endmodule

Parallel Statements
Following statements start executing simultaneously inside
module
{sequential statements}
end
ahlways begm
{sequential statements}
end
assign wire_name = [expression]};

Basic Data Types
a. Nets
e.g. wire, wand, tri, wor
B Contmnuously driven
B Gets new value when driver changes
B LHS of continuous assignment
tri [15:0] data;
/{ unconditional
assign data[15:0] = data_in;
{/ conditional

assign data[15:0] = enable ? data_in : 16'bz;

b. Registers
e.g reg

B Represents storage

B Always stores last assigned value

B LHS of an assignment m procedural block.
reg signal;
@(posedge clock) signal = 17b1;

!/ positive edge

(@(reset) signal = 1'b0; // event (both edges)

B if (reset = () begin
data = 87b00;
end
B case {operator)
Zdb:z=x+V;
2dl:z=x-¥,
d2z=x*y;

default - $display (“Invalid Operation™);

endcase
B initial begin # 50 MHz clock
clock=1;
forever #10 clock = ~clock;
end // precission 1 ns

B repeat (2} @(posedge clk) data;

B bus <=repeat {5) @ (posedge clk) data
// evaluate data when the assignment is
// encountered and assign to bus after 5

clocks.
B repeat (flag) begin // looping
... action .
B while (1 < 10) begin
... action ...
end
B for{i=0.1<9i=1i+1)begin
... action ...
end

wait {loe) #> data=d_in:

@(negedge clock) g =d;

begin i/ finishes at time #25
#Flox=y,
#l5a=0nb;

end
™ The @(*) token adds to the sensitivity list all

nets and variables that are read by the
statements in the always block.

Page 16 of 19

1,

Declarations

{3 {3} concatenation
+-* arithmetic
% modulus
»r=sla= felational
! logical negation
&& logical and
i logical or
= logical equality
= logical inequality
- case equality
= case inequality
~ bit-wise negation
& bit-wise and
| bit-wise inclusive or
" bit-wise exclusive or
S or ~" bit-wise equivalence
& reduction and
~& reduction nand
| reduction or
~ reduction nor
""* reduction xor

*og N reduction xnor
left shaft
s right shift
7 condition
or event or

Page 17 of 19

ADC
ADD
AND

BIC
BL

COP
CMN
CMP
ECR

LDc
LDm
LDR
MCR

MLA
MoV
MRC

MRS

M3SR

MUL

ORR

RSB
RSC

Instruction . A;ﬁan -
34 with carry - Rd = Rn+ Op2 + Carry
Add Rd = Rn+ Op2

AND Rd = Hn AND Op2
Branch 15 = address

Bit Clear | Rd = Rn AND NOT Op2
Branch with Link R14:=R15, R15 = address
Branch and Exchange R15 =Rn,

| T bit := Bn[0]

Coprocesor Data Processing | (Coprocessor-specific)
Campare Negative CPSR flags = An + Op2
Compare CPER flags == 8n - Op2

=xclusive OR Ad := (Rn AND NOT Op2)

‘ OR {op2 AND NCT Rn)

Load coprocessor from Coprocessor load
mermory

Load multiple registers Stack manipulation (Pop)
Load register from memory | Bd = (address)

Mave CPU register to cRn := rRn {2op=cRm}
coprocessor register

Multiply Accumulate Rd = (Rm *Rs) +Rn
Mave register or constant Rd:=0p2

Move from coprocessor Bn = cRn {Z<op=cRAm}
ragister to CPU register

Move PSR statusiflags to Rn = PSR

register

Move register 1o PSR PSR :=Rm

statusflags

Multiphy Rd:=Rm*"Rs

Kowe negative register Rd := (xFFFFFFFF EQOR Op2
CR Rd .= Rn OR Op2
Reverse Subtract Rd:=Cp2-Rn

Rewverse Subtract with Carry | Rd .= Op2 - Rn - 1 + Camy

Page 18 of 19

SWP
TEQ
TST

Swiap reistar with memary
| Test bitwise squalty
Tast bits

- sz

address = CRn

Stack manipulation {Push)

Rd = Rn- Op2

| OS5 call

Rd = [Ra, [Rn] = Rm

CPSR flags := Rn AND Op2

| CPSR flags = RnEOR Op2

Page 19 of 19

