Practice Problems for Curve Fitting - Solution

A. Linear Regression

1. Use least squares regression to fit a straight line to the data given in Table 1. Along with the slope and intercept, compute the standard error of the estimate and the coefficient of determinant.

2. An investigator has reported the data tabulated in Table 2 for an experiment to determine the growth rate of bacteria k (per d) as a function of oxygen concentration (mg/L). It is known that such data can be modeled by the following equation:

$$
k = \frac{k_{\text{max}}c^2}{c_s + c^2}
$$

where c_s and k_{max} are parameters. Use a transformation to linearize this equation. Then use linear regression to estimate c_s and k_{max} and predict **the growth rate at c=2 mg/L.**

B. General Linear Least Squares and nonlinear regression

A physics process can be described with the equation $y = f(x) = \frac{a_0}{x} + \frac{a_1}{x^2}$ *x a x* $y = f(x) = \frac{a_0}{x} + \frac{a_1}{x^2}$. The **measured values of** (x, y) are listed in the following table:

Use direct nonlinear regression method to determine a_0 and a_1 .

C. Polynomial Interpolation

Assume that the tabulated data in Table 3 are precise; apply the 3rd order Lagrange Polynomial to approximate $f(2.5)$ with precision to five decimal spaces.

D. Spline interpolation

Fit the data in Table 4 with a quadratic with natural end conditions.

Practice Problems for Curve Fitting - Solution

A. Linear Regression

1. Use least squares regression to fit a straight line to the data given in Table 1. Along with the slope and intercept, compute the standard error of the estimate and the coefficient of determinant.

Solution:

The straight line that results in the least sum of squares of the residuals between the measured y and the calculated y will be:

 $y = a_1 x + a_0$

where
$$
a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}
$$
 and $a_0 = \overline{y} - a_1 \overline{x}$

For the data in table 1 we have:

$$
n = 6, \sum x_i = 32, \sum y_i = 41, \sum x_i y_i = 245, \sum x_i^2 = 258, \overline{x} = 5.33, \overline{y} = 6.83.
$$

Substituting in the above relations:

$$
a_1 = \frac{6 \cdot 245 - 32 \cdot 41}{6 \cdot 258 - 32^2} = 0.30152
$$
 and $a_0 = 6.83 - 0.30152 \cdot 5.33 = 5.2258$

Therefore, the equation we are looking for is: $y = 0.3015x + 5.2258$.

The standard error of the estimate, $S_{Y/X}$, is given by the following equation:

$$
S_{Y/X} = \sqrt{\frac{S_r}{n-2}}
$$

where S_r is defined as

$$
S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2
$$

In this case, S_r is computed to be $S_r = 2.8931$.

The coefficient of determinant is r^2 is the normalized decrease in the error due to describing the data in terms of a straight line rather than an average value and it is given by the following equation:

$$
r^2 = \frac{S_t - S_r}{S_t}
$$

where S_t is the total sum of squares around the mean for y:

$$
S_t = \sum_{i=1}^n (y_i - \overline{y})^2
$$

For the given data, we have:

$$
S_t = 10.833
$$
 and $r^2 = \frac{10.833 - 2.893}{10.833} = 0.7329$

2. An investigator has reported the data tabulated in Table 2 for an experiment to determine the growth rate of bacteria k (per d) as a function of oxygen concentration (mg/L). It is known that such data can be modeled by the following equation:

$$
k = \frac{k_{\text{max}}c^2}{c_s + c^2}
$$

where c_s and k_{max} are parameters. Use a transformation to linearize this equation. Then use linear regression to estimate c_s and k_{max} and predict **the growth rate at c=2 mg/L.**

Solution:

The given equation for the growth rate of bacteria can be linearized in the following way:

$$
k = \frac{k_{\text{max}}c^2}{c_s + c^2} \Longrightarrow \frac{1}{k} = \frac{c_s}{k_{\text{max}}} \cdot \frac{1}{c^2} + \frac{1}{k_{\text{max}}}
$$

which is of the form $y = a_1 x + a_0$

with
$$
y = 1/k
$$
, $x = \frac{1}{c^2}$, $a_0 = \frac{1}{k_{\text{max}}}$ and $a_1 = \frac{c_s}{k_{\text{max}}}$.

As a result if we remake the data in table 2 accordingly, we can use linear regression to estimate c_s and k_{max} .

As in exercise 1, we need to calculate the following quantities for this data:

$$
n = 5, \sum x_i = 6.299, \sum y_i = 1.758, \sum x_i y_i = 4.399, \sum x_i^2 = 18.668,
$$

$$
\overline{x} = 2.076, \overline{y} = 0.586.
$$

Then we can calculate α_0 and α_1 :

$$
a_1 = \frac{5 \cdot 4.399 - 6.299 \cdot 1.758}{5 \cdot 18.668 - 6.299^2} = 0.202 \,, \quad a_0 = 0.586 - 0.202 \cdot 2.076 = 0.099
$$

Now that we know α_0 and α_1 , we can calculate c_s and k_{max} :

$$
a_0 = \frac{1}{k_{\text{max}}} \Rightarrow k_{\text{max}} = \frac{1}{a_0} = \frac{1}{20.099} = 10.1 \text{ d}^{-1}
$$

$$
a_1 = \frac{c_s}{k_{\text{max}}} \Rightarrow c_s = a_1 \cdot k_{\text{max}} = 0.202 \cdot 10.1 = 2.04 \text{ mg/L}
$$

and the expression for k is:

$$
k = \frac{10.1 \cdot c^2}{2.04 + c^2} \stackrel{c=2mg/L}{\Longrightarrow} k = 6.689 \ d^{-1}
$$

B. General Linear Least Squares and nonlinear regression

A physics process can be described with the equation $y = f(x) = \frac{a_0}{x} + \frac{a_1}{x^2}$ *x a x* $y = f(x) = \frac{a_0}{b} + \frac{a_1}{c^2}$. The **measured values of** (x, y) are listed in the following table:

Use direct nonlinear regression method to determine a_0 and a_1 .

$$
S_r = \sum (y_i - \frac{a_0}{x_i} - \frac{a_1}{x_i^2})^2
$$

\n
$$
\begin{cases}\n\frac{\partial S_r}{\partial a_0} = \sum 2(y_i - \frac{a_0}{x_i} - \frac{a_1}{x_i^2})(-\frac{1}{x_i}) = 0 \\
\frac{\partial S_r}{\partial a_1} = \sum 2(y_i - \frac{a_0}{x_i} - \frac{a_1}{x_i^2})(-\frac{1}{x_i^2}) = 0\n\end{cases} \Rightarrow \begin{cases}\n\sum (y_i - \frac{a_0}{x_i} - \frac{a_1}{x_i^2})(-\frac{1}{x_i}) = 0 \\
\sum (y_i - \frac{a_0}{x_i} - \frac{a_1}{x_i^2})(-\frac{1}{x_i^2}) = 0\n\end{cases} \Rightarrow \begin{cases}\n\sum (y_i - \frac{a_0}{x_i} - \frac{a_1}{x_i^2})(-\frac{1}{x_i^2}) = 0 \\
\sum (y_i - \frac{a_0}{x_i} - \frac{a_1}{x_i^2}) = 0\n\end{cases}
$$
\n
$$
\begin{cases}\n\sum (y_i - \frac{a_0}{x_i} - \frac{a_1}{x_i^2}) = 0 \\
\sum (y_i - \frac{a_0}{x_i} - \frac{a_1}{x_i^2}) = 0\n\end{cases} \Rightarrow \begin{cases}\na_0 \sum \frac{1}{x_i^2} + a_1 \sum \frac{1}{x_i^3} = \sum \frac{y_i}{x_i^2} \\
a_0 \sum \frac{1}{x_i^3} + a_1 \sum \frac{1}{x_i^4} = \sum \frac{y_i}{x_i^2}\n\end{cases}
$$

The system to solve is then:

$$
\begin{cases} 1.4236a_0 + 1.1777a_1 = 3.7500 \\ 1.1777a_0 + 1.0778a_1 = 3.3167 \end{cases} \rightarrow \begin{cases} a_0 = 0.9206 \\ a_1 = 2.0714 \end{cases}
$$

C. Polynomial Interpolation

Assume that the tabulated data in Table 3 are precise; apply the 3rd order Lagrange Polynomial to approximate $f(2.5)$ with precision to five decimal spaces.

Solution:

The third order Lagrange polynomial for the four data points given in table 3 will be:

$$
y = \sum_{i=1}^{4} y_i L_i(x), \ L_i(x) = \prod_{\substack{j=1 \ j \neq i}}^{4} \frac{x - x_j}{x_i - x_j}
$$

where:

• for $i=1$

$$
L_1(x) = \frac{(x-x_2)(x-x_3)(x-x_4)}{(x_1-x_2)(x_1-x_3)(x_1-x_4)} = \frac{(x-2)(x-3)(x-4)}{-6}
$$

• for $i=2$

$$
L_2(x) = \frac{(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)} = \frac{(x - 1)(x - 3)(x - 4)}{2}
$$

• for $i=3$

$$
L_3(x) = \frac{(x-x_1)(x-x_2)(x-x_4)}{(x_3-x_1)(x_3-x_2)(x_3-x_4)} = \frac{(x-1)(x-2)(x-4)}{-2}
$$

• and for $i=4$

$$
L_4(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)} = \frac{(x - 1)(x - 2)(x - 3)}{6}
$$

Changing the notation of the data points to make it easier to substitute, gives: Substituting gives:

$$
f_3(x) = \frac{(x-2)(x-3)(x-4)}{-6} \cdot 3 + \frac{(x-1)(x-3)(x-4)}{2} \cdot 0.9 +
$$

+
$$
\frac{(x-1)(x-2)(x-4)}{-2} \cdot 0.6 + \frac{(x-1)(x-2)(x-3)}{6} \cdot 0.4 \Rightarrow
$$

$$
f_3(x) = -0.5(x-2)(x-3)(x-4) + 0.45(x-1)(x-3)(x-4) -
$$

-0.3(x-1)(x-2)(x-4)+0.067(x-1)(x-2)(x-3)

To find $f(2.5)$ we substitute $x=2.5$ in the above equation:

$$
f_3(x) = -0.5(2.5-2)(2.5-3)(2.5-4) + 0.45(2.5-1)(2.5-3)(2.5-4) -
$$

-0.3(2.5-1)(2.5-2)(2.5-4) + 0.067(2.5-1)(2.5-2)(2.5-3) = 0.63125

D. Spline interpolation

Fit the data in Table 4 with a quadratic with natural end conditions.

Solution:

For quadratic splines, we want to derive a second order polynomial for each interval which will fit the data in the interval. The polynomial is of the following form:

 $f_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$ Natural condition implies $c_1 = 0$, $b_1 = (y_2 - y_1)/(x_2 - x_1)$.

Use the formula:

 ϵ

$$
b_{i+1} = y_{i+1}
$$
\n
$$
b_{i+1} = b_i + 2c_i(x_{i+1} - x_i)
$$
\n
$$
c_{i+1} = \frac{y_{i+2} - y_{i+1}}{(x_{i+2} - x_{i+1})^2} - \frac{b_{i+1}}{(x_{i+2} - x_{i+1})}
$$
\n
$$
b_1 = -66; \begin{cases} a_2 = 22 \\ b_1 = -66; \begin{cases} b_2 = -66; \\ b_2 = -66; \end{cases} \end{cases} \begin{cases} a_3 = 13 \\ b_3 = 30 \\ c_1 = 0 \end{cases}
$$

The splines are plotted in the graph below.

